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Introduction 

Au cour du chapitre précédent nous avons énoncé la relation 

fondamentale de  la  Dynamique et nous sommes maintenant en mesure 

de prévoir le mouvement d’une particule si nous connaissons la force 
qui s’exerce sur elle. 

C’est aussi le cas d’une particule soumise à une force centrale: quelle que soit la 

loi de force et sa trajectoire suivie, nous savons que le moment cinétique de la 
particule doit rester constant. 

La connaissance des invariants est d’une grande importance pour le physicien. 

                                             
                                            et un  autre invariant, c’est l’énergie. ,
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C’est la cas du choc entre deux particules, ou les forces d’interactions sont 

souvent  Inconnues.  

Nous savons néanmoins qu’au cours de la collision une quantité doit rester 

constante: la quantité de mouvement totale du système des deux particules. 



Travail et énergie 

Soit une particule de masse se déplaçant sous l’effet d’une force F: la variation de la 

quantité de mouvement                           est mesurée par le produit:          de la force 
par le temps, que nous appelons impulsion de la force   
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Nous appelons travail élémentaire de la force selon le déplacement dx, le produit 
Fdx:   dw Fdx

Fdt: mesure une variation de  quantité de mouvement P

Le travail           mesure la variation de la grandeur               que nous appelons  
énergie cinétique. 
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Si pendant un temps dt le déplacement dx effectué par la particule est parallèle à     , 

nous pouvons aussi effectuer le produit de la force par le déplacement, soit Fdx, et dire 

que ce produit  mesure la variation d’une nouvelle quantité attaché à la particule et qu’il 
est facile d’exprimer:   

F



L’énergie cinétique est une grandeur scalaire, elle ne dépend pas de la direction 
de la vitesse. 

// 0
C

F dx de meme sens det E 

// 0
C

F dx de sens opposé det E 

Si F d

Si le déplacement n’est plus parallèle le à la force, on doit revoir la définition de 
l’énergie cinétique 

En effet considérons le cas ou la force est 

perpendiculaire au déplacement. C’est le cas d’un 

satellite artificiel ou le cas de la lune qui tourne autour 

de la terre, ou encore celui de la pierre tournant à 

l’extrémité d’une fronde. 

Dans ces cas il n’existe aucune variation d’énergie cinétique. Une force constante 
et perpendiculaire au déplacement ne peut faire varier le module de la vitesse.  
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Lorsque la force n’est ni perpendiculaire, ni parallèle au déplacement, nous pouvons 
la décomposer en deux composantes:   
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La composante perpendiculaire n’est pas responsable de la variation d’énergie 
cinétique, seule la composante // l’est: 

//
cosdw F d Fd  





dw F d 

Si une force variable agit sur une particule au cour d’un  déplacement fini de A vers B, 
la variation d’énergie cinétique est mesurée par: 
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Théorème de l’énergie cinétique  

Particule soumise à une force de gravitation 
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( )

2 2

B B B

B B

A x C A B A

A A A

W dW F d F dx E mv mv          

2

Mm
F G u

r
 

Théorème de l’énergie cinétique: 
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Énergie potentielle au voisinage de la terre PP

A
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A partir de la relation générale de l’énergie potentielle 

gravitationnelle on peut déduire son expression 
particulière au voisinage de la terre.(mgₒh) 
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h et h Sont les altitudes de la masse m par rapport au sol 
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A B
h et h : Sont très petits par rapport au rayon de la terre 
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L’énergie potentielle gravitationnelle  

 
est donnée par:   

avec: ( ) 0
Pg

E  



On définit l’énergie potentielle gravitationnelle de la masse m à l’altitude h comme: 

0
( ) st

Pg
E h mg h C 

La constante sera défie en choisissons l’origine de l’énergie potentielle  

Exemple 1: on lance une pierre verticalement avec une vitesse vₒ 

Au sol: 
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A partir du graphe Ep(h) on peut en déduire celui Ec(h) 
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Exemple 2: particule dans un champ de force élastique. 

Considérons une particule astreinte à se déplacer sur un axe x’ox sans frottement et 
soumise à une force du type:  
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Au cour du déplacement du bloc, la force 
 le rappelle vers sa position d’équilibre. 
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Forces dérivant d’un potentiel ou forces conservatives 

B

B

A

A

W F d 

peut toujours s’exprimer comme la différence des valeurs d’une 

Nous définissons l’énergie potentiel de la particule dans un champs de la force F par                                        

( ) ( ) ( ) ( )
B

A P P P P
W E A E B et non E B E A  

La relation implique que le travail de la force est indépendant du chemin suivi pour 

aller de A vers B: la différence Ep(A)-Ep(B) ne dépend que des coordonnées de A et de 
B. 

En particulier, si la trajectoire est fermé et que le point final correspond au point initial 

,on a Ep(A)=Ep(B) et la travail est nul. Ceci signifie que pendant une partie du trajet le 

travail est positif (Ec augmente), et durant l’autre partie le travail est négatif mais a 
;même valeur absolue (Ec diminue). Sur la trajectoire complète le travail total est nul.   

Une force dérive d’un potentiel si le travail de cette force pour un déplacement 

quelconque de A à B 

( , , ) ( , , )
P A A A P B B B

E x y z E x y z 

( , , )
P

E x y zmême quantité évaluées au point de départ et au point d’arrivée:  
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Lorsque  une particule est soumise à une force dérivant d’un potentiel, on a pour un 
déplacement de A vers B: 

( ) ( ) ( ) ( )
B

A C C P P
W E B E A E A E B   ( ) ( )

B B B

A C A P A
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( ) ( ) ( ) ( )
C P C P T

E A E A E B E B E   

Puisque les états A et B sont arbitraires, on peut donc écrire pour n’importe quelle 
position de la particule:  

L’énergie totale de la particule est conservée. C’est la raison pour laquelle on 
les  appelle aussi forces conservatives.  

L’équation de définition de l’énergie potentiel s’écrit: 

Si nous connaissons Ep(x,y,z) on a: 

P P P

zx y
dx dy dz F dx F dy F dz

z
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P
pente de la coube E x
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2
( )W F

2 2
( ) 0W F J F conservative 

1 1
4( )

3
W F J F non conservative 

Exercice : 43 

Soit un satellite de masse m tournant autour de la terre de masse M à 

distance r du centre de la terre. En supposant que sa trajectoire est circulaire : 

1-Donner l’expression de l’énergie potentielle correspondant à la force de gravitation  

entre le satellite et la terre, préciser l’origine choisie pour l’énergie potentielle. 
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2-Donner l’énergie mécanique totale en fonction de G, M, m et r 
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3-Montrer que les trajectoires circulaires vérifient la troisième loi de Kepler    

où  w est la vitesse angulaire 

2 3r GM 

2

2

2 N

m
m m

GM v
F a w r

r r
m   

2 3
GM w r

4-Si un satellite parait immobile dans le ciel, calculer sa hauteur, sa vitesse et  

son énergie totale.  

Le satellite parait immobile dans le ciel,  
donc il a la même période que la terre 



On donne : 

M = 5.98 1024 kg, RT = 6400 km, m = 68 kg et G = 6.67 10-11 N m2 kg-2 

2 3
GM w r

3 2GM
v GMw

T


 

3 2GM
v

T




T: est la période de la terre. 
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On considère le système représenté ci dessous. La masse m1 peut glisser sans 

frottements sur un plan incliné faisant un angle  α avec l’horizontale. 

La masse m2 peut glisser sur le plan horizontal caractérisé par les coefficients de 

frottement  statique µs= 0.6 et dynamique µg=0.5. 

Le fil est inextensible, les masses de la poulie et du fil sont négligeables.   
              On Donne:      α =300          m2=2kg              gₒ= 10m/s2 

Exercice : 25 

1-Calculer la valeur minimale de m1 pour laquelle le système se met en mouvement. 

2T 2T

2P

2C

1P

1C

1T

1T

 //



o//



'o

Les forces agissant sur m₁ sont (P₁,T₁,C₁). 
Celles sur m₂ sont (P₂,T₂C₂).  

C₁ est perpendiculaire au plan car il n’y a pas 
de frottements .  

C₂=Cₒ (limite de l’équilibre) est inclinée vers 
la droite car Cₒ s’oppose au mouvement .  

Appliquons la relation fondamentale de la dynamique aux deux masses . (RFD) 

16 

Poulie de masse négligeable :T₁=T₂=T .  
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1 1 1 1 1 1: 0m P T C m a   

(3)

2-Représenter, dans ce cas, les forces appliquées à chacune des masses 
            Echelle : 1cm→4N 

1 1 1 1 0 1 1 024 6 ; cos 20,79 5,2 ; sin 12 3P m g N cm C m g N cm T m g N cm         

2 0 2 0// 2 0 2 020 5 ; 12 3 ; 23,32 5,8sP C m g N cm C m g T N cm C N cm         

1 0 1sin 0 0 (1)// : m g T   

1 1 0 cos: (2)C m g 






2 2 2 2 2 2: 0m P T C m a   
2 0//0 0 (3// : )T C  

0 2 0: (4)C m g 






0// 0sC C 

 0//C T 2
2 0 1 0 1sin

sin

s
s

m
m g m g m


 


   

2 2 0sT m g
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3-  Pour m1=4kg, déterminer l’accélération a de chaque masse et la tension T du fil 

1 1 1 1 1 1:m P T C m a   

2 2 2 2 2 2:m P T C m a   

Poulie de masse négligeable :T₁=T₂=T .Fil inextensible :a₁=a₂=a  

1 0 2 0 1 2(1) (3) sin ( )gm g m g m m a     

1 2 2
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1 2
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1,67 /
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gm m
a g m s

m m

 
 



1 2
1 0 0

1 2

( sin ) (sin ) 13,33
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g
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m m
      



1 2
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1 0 1 1

1 1 0
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)
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

  




2 // 2
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:
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):
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T C m a
avec C C
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 



  



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Si  on effectue un déplacement suivant dx, (dy et dz) sont nuls et l’on a: 
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 
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On dit que F est le gradient de la fonction Ep(x,y,z) avec un signe négatif.  

On écrie alors: 

Si le mouvement est dans un plan, repéré en coordonnées polaires r et θ,  
l’énergie potentiel est une fonction de r et θ 

1 1 2 2
( )

P
E W F d F d F d          

Est la dérivée partielle de Ep par rapport à x (y et z) restant constants.  

De même pour dy et de même pour dz. 
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  















 
 

 

Forces dérivant d’un potentiel  
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Forces non conservatives 

Dans la vie courante les exemples ne manquent pas, ou les mesures mettent en défaut 
La conservation de l’énergie mécanique totale. 

-un objet lancer sur une table horizontale, pendant que l’on pousse son énergie 

 cinétique augmente pendant que son énergie potentiel gravitationnelle reste 
 constante: l’énergie mécanique totale augmente.  
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Les forces de frottements ne sont pas des forces  conservatives. 

En effet elles ne correspondent  pas à une interaction entre deux 

particules. Chacune de ces forces d’interaction peut s’exprimer 

au moyen d’une force dérivant d’un potentiel, mais l’effet 

macroscopique résultant ne dérive pas d’un potentiel, pour la 

raison suivante: bien que le corps après avoir achevé une 

trajectoire fermée, soit d’un point de vue macroscopique revenu 

à sa position initiale,  

les molécules qui le compose ne sont pas revenues à leur 

état initial. L’état microscopique final n’est pas identique à 

l’état microscopique initial. Une partie de l’énergie 

mécanique totale est prise par l’agitation moléculaire ce qui 

se traduit par un dégagement d’énergie calorifique.  
De même lorsque un satellite artificiel change d’orbite  

T f
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Discutions des courbes d’énergie potentielles 
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Les graphes qui représentent l’énergie potentiel Ep en fonction de x dans les Problèmes 

à une dimension ou Ep(r) pour les forces centrales, sont très utiles pour comprendre le 
mouvement d’une particule, sans avoir à résoudre l’équation du mouvement.   

Sur la courbe précédente nous avons représenté une courbe d’énergie potentielle 
dans le cas d’un mouvement à une dimension.  

La force F qui agit sur la particule quel que soit x est donnée par: 

: ( )P

x P

dE
F pente de la coube E x

dx
 

La mesure algébrique de la force selon x’ox est de signe opposé à la pente  

La force F est la dérive de l’énergie  
potentielle précédée du signe - 



Là ou l’énergie potentielle est maximum ou minimum nous avons la pente nulle,  
donc la force F=0; autrement dit ce sont des positions d’équilibre:                                                                                                          stable pour un  

minimum car si la particule est déplacée légèrement de sa position d’équilibre une 

 force agit sur elle pour la ramener à cette position,                                                                                  instable pour un  maximum  

puisqu’un petit déplacement de sa position d’équilibre crée une force qui tend à  
l’écarter de cette position. 

La particule d’énergie totale E₁  coupe Ep en deux points A et B, leurs projections sur 

l’axe du mouvement x’ox sont A’ et B’.                                                                À gauche de A et à droite de B Ec<0 donc pas de 

mouvement.                       Le mouvement de la particule est limité à l’inter-valle A’B’, le mouvement 

est oscillatoire.                          Aux points A’ et B’ les vitesses sont nuls (points de rebroussements). 



24 

Énergie totale d’un satellite 
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Champ de force-vecteur champ gravitationnelle-potentiel gravitationnelle 

Un champ de force est une région de l’espace  
Ou des forces agissent sur une particule. 
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3FSoit une masse m place en différent endroit  

autour de M. Pour chaque position une force 
 F est appliquée. 

On dit que m est placée dans le champ de gravitation de M, on obtient  Ep=-GMm/r 
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Conclusion: 
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Spectre de champ gravitationnelle 

Au voisinage du sol 

Autour de la terre 
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