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Introduction

Au cour du chapitre precedent nous avons énoncé larelation
fondamentale de la Dynamique et nous sommes maintenant en mesure

de prévoir le mouvement d’une particule si nous connaissons la force
qui s’exerce sur elle.

C’est la cas du choc entre deux particules, ou les forces d’interactions sont
souvent Inconnues.

Nous savons néanmoins qu’au cours de la collision une quantité doit rester
constante: la quantité de mouvement totale du systeme des deux particules.

C’est aussi le cas d’une particule soumise a une force centrale: quelle que soit la

loi de force et sa trajectoire suivie, nous savons que le moment cinétique de la
particule doit rester constant.

La connaissance des invariants est d’une grande importance pour le physicien.

—_

P=C* , L = C ' et un autre invariant, c’est I’énergie.



Travail et énergie

Soit une particule de masse se déplagant sous I'effet d’'une force F: la variation de la
quantité de mouvement dP = d (mV )est mesurée par le produit: Fdt de la force
par le temps, que nous appelons impulsion de la force

dt dt
Si pendant un temps dt le déplacement dx effectué par la particule est parallele a F,

nous pouvons aussi effectuer le produit de la force par le déplacement, soit Fdx, et dire

que ce produit mesure la variation d’'une nouvelle quantité attaché a la particule et qu’il
est facile d’exprimer:

Fdx = mﬂdx= mvdv = d 1mv2
dt 2

Nous appelons travail élementaire de la force selon le deplacement dx, le produit
Fdx: dw = Fdx

Fdt: mesure une variation de quantité de mouvement AP

: L. 1
Le travail Fdx mesure la variation de la grandeur > mv~ que nous appelons
énergie cinétique.




Fdx =d (%mv2)=d(EC)

L'énergie cinétique est une grandeur scalaire, elle ne dépend pas de la direction
de la vitesse.

*~ // dX et de meme sens = dE_. > 0= E_ .7

*F // dX et de sens opposé = dE_ < 0= E_

Si le déplacement n’est plus paralléle le a la force, on doit revoir la définition de
I'énergie cinétique

En effet considérons le cas ou la force est de
perpendiculaire au déplacement. C’est le cas d’'un

satellite artificiel ou le cas de la lune qui tourne autour

de la terre, ou encore celui de la pierre tournant a
I'extrémité d’une fronde.

Dans ces cas il n'existe aucune variation d’énergie cinétique. Une force constante
et perpendiculaire au déplacement ne peut faire varier le module de la vitesse.

SiF 1d¢ =dw=0



Lorsque la force n’est ni perpendiculaire, ni paralléle au déplacement, nous pouvons

la decomposer en deux composantes: = et .

F,
_____ |
I —>_ — —_—
P | = I:L_I_IZ//
> =

La composante perpendiculaire n'est pas responsable de la variation d’énergie
cinétique, seule la composante // I'est: dw = F,d ¢ = Fd ¢ cos &

3
dw = Fdfcos@ =F -d#¢
3

dw=F -dZ¢

Tl

Si une force variable agit sur une particule au cour d'un déplacement fini de A vers B,
la variation d’énergie cinétique est mesureée par:



Théoreme de I’énergie cinétique

Particule soumise a une force de gravitation

Théoréme de I’énergie cinétique:

W2=|dw=|F.d¢=|F -dx=(AE
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W, =j'|f -d4 =—iG MM 5. g7 =GMmi—d—[=GMmid (1) =[GMmT=(AEC)i

/ r r A r r A¢
% ET =ET =lmVi—GMm=£mV;—GMm(—GMm_GMm=EmV2—1mV2
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1 GMm
» Comme: E.=E.+E,=—mv’— Donc: EP(r)=—GNIm +C*
r r
y B B
= = | GMm GMm GMm
\I WAB: Fd£=|: r ] - I - r =EPA_EPB=_(AEP)i=(AEc)i
A A B A
. — —
We = [ F-dZ = (AE,)2=~(AE, )}
Energie potentielle au voisinage de la terre T‘S

A partir de la relation générale de I'énergie potentielle
gravitationnelle on peut déduire son expression h
particuliere au voisinage de la terre.(mg.h)




L’énergie potentielle gravitationnelle

GMm _.
— >— U estdonnée par: Epg — _GMm
E

avec: EF,g (o) =0

Posons: rr=R+h, et rr=R+h,

hA et hB Sont les altitudes de la masse m par rapport au sol

Epg (A) et Epg (B) Sont les expressions de leurs énergie potentielle correspondante

Mm e Mm =GMm(R+hA)_(R+hB)
R+h R+h, (R+h,)(R+h,)

E, (A)-E, (B)=-G

A

hA et hB . Sont tres petits par rapport au rayon de la terre

GM
RZ

On peut donc écrire:E,, (A) - E. (B)=m (h,—h,)=mg,(h,—h,)



On définit I'énergie potentielle gravitationnelle de la masse m a l'altitude h comme:
t
EF,g (h)=mg,h+C°
La constante sera défie en choisissons l'origine de I'énergie potentielle

Exemple 1: on lance une pierre verticalement avec une vitesse v,

Ausol: E +EQW)

1 1
- =Emv§ +mg,(0) = Emvj =C*

A partir du graphe Ep(h) on peut en déduire celui Ec(h)
c=E.+E,

pour :h=0—>E,(h)=mgh  E_= E -E,

pour:h=0->E_=E, pour:E . =E, > E =0
Exemple 2: particule dans un champ de force élastique.

Considérons une particule astreinte a se_deplacer sur un axe x'ox sans frottement et
soumise a une force du type: F = —KXI



Au cour du déplacement du bloc, la force F
le rappelle vers sa position d’equilibre.

B
on peut écrire: W = I F.df= (AE.);
A

(AE, )" = E_(B)-E_(A)= j d?=jlfx-di=j—kxdx=%kxi—%kx§

U U
Lot L1y o 1 o "
EkxA+§va=Eka+§mvB=EC(x)+EP(x)=ET=EC+EP=C

On écrie: =r, =5 kX +C* ,
U = E, (X)==kX’
pour : x=0-E, (0)=0 T2

2

. 1
pour:x=1a:V=0- ET=§ka




Forces dérivant d’'un potentiel ou forces conservatives

Une force dérive d’un potentiel si le travail de cette force pour un déplacement
quelconque de A a B peut toujours s’exprimer comme la différence des valeurs d’'une

méme quantité évaluées au point de départ et au point d’arrivée: E.(X,Y,2)

W B =Ilf-d_2 —E_(X,,¥Y..Z,)—E_(X,,VY.,Z,)

Nous définissons I'énergie potentiel de la particule dans un champs de la force F par

W =E_(A)—E_(B)et non E_(B)—E_(A)

La relation implique que le travail de la force est indépendant du chemin suivi pour

aller de A vers B: la différence Ep(A)-Ep(B) ne dépend que des coordonnées de A et de
B.

En particulier, si la trajectoire est ferme et que le point final correspond au point initial
,on a Ep(A)=Ep(B) et la travail est nul. Ceci signifie que pendant une partie du trajet le
travail est positif (Ec augmente), et durant I'autre partie le travail est négatif mais a
;méme valeur absolue (Ec diminue). Sur la trajectoire complete le travall total est nul.



Lorsque une particule est soumise a une force dérivant d’'un potentiel, on a pour un
déplacement de A vers B:

WS = (AE.)S = —(AE.)? =>W° =E_(B)— E_(A) = E_(A)— E,_(B)

L
E.(A)+E.(A)=E.(B)+E (B)=E, <

Puisque les états A et B sont arbitraires, on peut donc écrire pour n'importe quelle
position de la particule: E.+E =E, = C st

L'énergie totale de la particule est conservée. C’est la raison pour laquelle on
les appelle aussi forces conservatives.

L'équation de définition de I'énergie potentiel s'écrit:  dE_ = —F.d?
F =- ddEP . pente de la coube E_ ()
X
Si nous connaissons Ep(x,y,z) on a:. OE_, = —0W
soitt. ZEe dx + °E, dy + OE., dz = —F dx—F dy — F,dz

OX oy oz



- X2 ( 21 [x*7T 0
W (F,) = | xdx+ = xdx+| xdx+ xdx =| = | +| = | +[ x| =2+2-4=0
; 2 ) 2 | |8 2

0 0 0

W(F,) = % J = F nonconservative ~ W(F,)=0J = F, conservative

Soit un satellite de masse m tournant autour de la terre de masse M a
distance r du centre de la terre. En supposant que sa trajectoire est circulaire :

1-Donner I'expression de I'énergie potentielle correspondant a la force de gravitation
entre le satellite et la terre, préciser I'origine choisie pour I'énergie potentielle.

WE =I|f.d2=—j:e Mm u.d2=—ie MM iy =GMmid(%)=[Gmm]} [AE.]

r

lmvé_lmvi=GMm_GMm - 1 . _GMm_1 . GMm
2 rB rA 2 A rA 2 ® I’B
Ep(r)=_GMm Cst
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pour r »co=>E_ =0, Cst=0etE_ =-

_GMim

F

E. =_GMm
r
,  GMm GMm
mv: = = E. =
r 2r

3-Montrer que les trajectoires circulaires verifient la troisieme loi de Kepler

ou w est la vitesse angulaire

2
F=GMm=m% v

r

r

N\

GMm

I

>—ET=EC+EP=—

J

—mM— = mWr==== GM =wr’

GM_ m 2 2

2-Donner I'énergie mécanique totale en fonction de G, M, metr

GMm
2r

@’r’ =GM

4-Si un satellite parait immobile dans le ciel, calculer sa hauteur, sa vitesse et

son énergie totale.

Le satellite parait immobile dans le ciel,

donc il a la méme période que la terre



23
2 CM=WT | s Vo —oMw = CM27
ma, =M—=mw’r == — =wr’
r W l
V3_G|\/|272'
T. est la période de la terre. T
M
GI\/I=W2r"”=v2r—>r=G2 =R+h == h=G|>/I—R
Vv V
213
ET=—EC=Em GM 2~
2 T

On donne ;
M =5.98 1024 kg, R; = 6400 km, m = 68 kg et G = 6.67 101 N m? kg~

15



On considére le systeme représenté ci dessous. La masse m, peut glisser sans
frottements sur un plan incliné faisant un angle a avec I'horizontale.

La masse m, peut glisser sur le plan horizontal caractérisé par les coefficients de
frottement statique pg= 0.6 et dynamique p,=0.5.

Le fil est inextensible, les masses de la poulie et du fil sont négligeables.
On Donne: a =30° m,=2kg Jo= 10m/s?

1-Calculer la valeur minimale de m, pour laquelle le systeme se met en mouvement.

Les forces agissant sur m, sont (P4,T1,Cy).
Celles sur m, sont (P, T.C,).

C; est perpendiculaire au plan car il n’y a pas
de frottements.

C2=C, (limite de I'équilibre) est inclinée vers
la droite car C, s‘'oppose au mouvement .
Appliguons la relation fondamentale de la dynamique aux deux masses . (RFD)

Poulie de masse négligeable :T=T,=T.

16



m:B+T +C =ma =0 — II:mg,sina—T,+0=0(1)
1:C, =m,g,cosa (2)

/]:0+T,-C,, =0(3)

L:Cy, =m, 0, (4) — T, =um,g,

Cor]|= 1.]Co.

i m
(3)—) CO//IT Zﬂsngoz 1g03|na:>m1:'tfs 2
SINo

m,:P,+T,+C,=m,3, =O—>{

2-Représenter, dans ce cas, les forces appliguées a chacune des masses
Echelle : 1lcm—>4N

HEH =m,g = 24N — 6 cm; HQH = m,g,cosa = 20,79N — 5,2 cm; Hflu =m,g,sina=12N — 3cm

IP,|=Co, =m,g=20N —5cm; C,, =um,g, =|T,|=12N - 3cm; |C,|=23,32N —-5,8¢cm



3- Pour m,=4kg, déterminer I'accélération a de chaque masse et la tension T du fil

Poulie de masse négligeable :T,=T,=T .Fil inextensible :a;=a,=a

II'mg,sina—T,+0=m,a(l)
e, = 1:C, =
:C, =m,g,Cosx (2)

avec:|Cy| = 4 |C. |

3
O
_I_
o
_|_
NC') }
[

3

~ [I:0+T,-C, =m,a(3)
{L: C, =m,g, (4)
(1) +(3) = mg,sina — u,m,g, =(m, +m,)a
Ny a—g m, sina — z4,m
°(m+m,)

2=167m/s?

7] =m,(g,sina—a) = g, (sincr+ ;) =13,33 N

(m m)



oE L . .
axp Est la dérivée partielle de Ep par rapport a x (y et z) restant constants.

Si on effectue un déplacement suivant dx, (dy et dz) sont nuls et I'on a:

_BE, dE

=F =— ® Forces dérivant d’'un potentiel [
Ox 8 dx P _9E. _ E
OX *
q§ — aaEP = Fy
De méme pour dy et de méme pour dz. Y
oE .
— — |:Z
L oz

On dit que F est le gradient de la fonction Ep(X,y,z) avec un signe négatif.

(5 ) ( oE.D
= ox - ox
Onécriealors: F | F, |=—grad(E,)=— 9 |g.=| %
oy oy
F, ) 1=

8z . oz J

Si le mouvement est dans un plan, repéré en coordonnées polairesr et 6,
I’énergie potentiel est une fonction der et ©

PE, =—8W =—F -d¢=—(F,-d¢, +F,-d2)

P



oE
or

OE.

ok " dr +

P

Fr=_6E
or
F0=_£6EP
r 06

Forces non conservatives

d@=—(Fdr-
0

tgd0=%d0: df,=rdé

F rd@) " =drr

r

0

Dans la vie courante les exemples ne manguent pas, ou les mesures mettent en défaut

La conservation de I'énergie mécanique totale.

-un objet lancer sur une table horizontale, pendant que 'on pousse son énergie
cinétique augmente pendant que son énergie potentiel gravitationnelle reste
constante: I'énergie mécanique totale augmente.
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Les forces de frottements ne sont pas des forces conservatives.
En effet elles ne correspondent pas a une interaction entre deux
particules. Chacune de ces forces d’interaction peut s’exprimer
au moyen d'une force dérivant d’'un potentiel, mais I'effet
macroscopique resultant ne derive pas d’'un potentiel, pour la
raison suivante: bien que le corps apres avoir achevé une
trajectoire fermee, soit d’'un point de vue macroscopique revenu
a sa position initiale,

les molécules qui le compose ne sont pas revenues a leur
état initial. L’état microscopique final n’est pas identique a
I’état microscopique initial. Une partie de I’énergie
meécanique totale est prise par I'agitation moléculaire ce qui
se traduit par un dégagement d’énergie calorifique.

De méme lorsque un satellite artificiel change d’orbite

AE, =-W, AE, =-W, =-C AB

T



. pente de la coube E_ (X)

dE,
dx

X

Discutions des courbes d’énergie potentielles g

- =3

E.=(E,-E.)>0=>mw

.

— e o e o -

-

N
9\



Les graphes qui représentent I'énergie potentiel Ep en fonction de x dans les Problemes
a une dimension ou Ep(r) pour les forces centrales, sont tres utiles pour comprendre le
mouvement d’'une particule, sans avoir a résoudre I'équation du mouvement.

Sur la courbe précédente nous avons représenté une courbe d’énergie potentielle
dans le cas d’'un mouvement a une dimension.

La force F qui agit sur la particule quel que soit x est donnée par:

F =—%: . pentedelacoube E,(x) —= Laforce F estla dérive de 'énergie
dx potentielle précédée du signe -

La mesure algébrique de la force selon x’ox est de signe oppose a la pente

La ou I'énergie potentielle est maximum ou minimum nous avons la pente nulle,
donc la force F=0; autrement dit ce sont des positions d’équilibre: stable pour un
minimum car si la particule est déplacée légerement de sa position d'équilibre une
force agit sur elle pour la ramener a cette position, instable pour un maximum
puisqu’un petit déplacement de sa position d’équilibre crée une force qui tend a
I'écarter de cette position.

La particule d’énergie totale E; coupe Ep en deux points A et B, leurs projections sur
'axe du mouvement x’ox sont A’ et B’. A gauche de A et a droite de B Ec<0 donc pas de
mouvement. Le mouvement de la particule est limité a I'inter-valle AB’, le mouvement
est oscillatoire. Aux points A’ et B’ les vitesses sont nuls (points de rebroussements).



. : : GM_ m GM
Energie totale d’un satellite F = rzT =mg — Q= =——1 =g R’
2
pour r >0 = EPg =0, Cst=0 == E_ =—GI\/Im =—mgr =_mg0R_
I I
GM.m M 2 ’ 2
F=—J]T—=P=mg _G Tmzzma,\,:mv—:mwzrzm2—7Z r:m4i2r
r (R+h) r T
Déterminer le rayon de l'orbite en fonction de w,g.et R
F GM 3 R2 3 R2 R2

r :govqr ZQOW ‘ V2:g0_

Déterminer I'énergie cinétique du satellite en fonction de w,g.et R

1 R? E
= ——mg, — =—-mg,— = —_
52 L T =M 2
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Champ de force-vecteur champ gravitationnelle-potentiel gravitationnelle

Un champ de force est une région de I'espace
Ou des forces agissent sur une particule.

Soit une masse m place en différent endroit
autour de M. Pour chague position une force
F est appliquée.

On dit que m est placée dans le champ de gravitation de M, on obtient Ep=-GMm/r

la masse M produit dans I'espace qui I'entour un état physique que nous caractérisons
par le vecteur champ gravitationnelle Y et un potentiel gravitationnelle U, avec:

U accélération de la pesanteur.  _
r’ F=m

E,=m

g:

m 3| T
Q

C

GM : .
U = —" =——— potentiel gravitationnelle.
m r



la masse M produit dans I'espace qui I'entour un état physique que nous caractérisons
par le vecteur champ gravitationnelle 9 et un potentiel gravitationnelle U, avec:

o F_ GM

g = —=————Uaccelération de la pesanteur.
m r
E GM : L

U = —= =——— potentiel gravitationnelle.
m r

On place m dans le champ de gravitation de M:

F=m

p =M

Q)

on obtient ; E

C



Conclusion: F=mg /

Epsz N gX Z%X
I B

_ Fa = — ra
7 P 7 7 \ 9z 8%2

Spectre de champ gravitationnelle

—_ +=={*=]'=— 1= | Lignes de champ

Au voisinage du sol

Surfaces equipotentielles Autour de la terre
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