
Champs et potentiels 

électrique 
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On appelle champ électrique une région de l’espace où, en tout point, une charge q, 

maintenue immobile, est soumise à l’action d’une force électrique.  

On introduit alors une grandeur vectorielle     :  appelée champ électrique.  E

De la même manière en mécanique, si au voisinage de la terre, où règne le champ de la 

pesanteur     , on place une masse m, elle sera soumise à la force de gravitation qui, 

dans ce cas, n’est autre que son poids.  

g

On peut noter l’analogie entre le champ électrique     et le champ de gravitation     créé 

par la terre. Seulement     est toujours dirigé vers le centre de la terre alors que le 

sens du champ électrique dépend du signe des charges qui le créent.  

E
g

g

N.B. 1°) L’existence d’un champ ne se manifeste que lorsqu’on y introduit un corps:  

 -- de masse m dans le cas la gravitation  

-- de charge q dans le cas de l’électrostatique.  

       2°) Le champ désigne :  

-- la région de l’espace où une particule est soumise à l’action d’une force  

-- la grandeur vectorielle     ou     par exemple. E g

En électrostatique: 
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Les charges Q et q ne jouent plus ici le même rôle : Q est la charge source du champ 

électrique qu’elle crée 

Avec le concept de champ électrique, le problème est posé d’une façon différente.  

Une charge électrique Q fixe, appelée ″charge source ″, crée dans l’espace qui 

l’entour un ″état physique″ , appelé ″champ électrique″, qui est mis en évidence 

par son action sur toute autre charge q placée en un point M de cet espace.  

Cet ″état″ existe même en l’absence de la charge q.  
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                                     et q la charge mobile placée dans ce champ, dont le comportement 

sera étudié.  
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  Le champs  électrique est dirigé du potentiel  

le plus élevé vers le plus petit. 



Rappel: champ et potentiel gravitationnels 

Pour définir le champ électrique et la force électrique, Coulomb a fait une analogie 

avec le champ et la force de gravitation de Newton.  

Force  Gravitationnelle (Newton)  Force électrique (Coulomb) 
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Champ et potentiel crées par des charges ponctuelles: 

Charge ponctuelle unique: 
Q> r x 

M
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Le champ est sortant 
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Le champ est rentrant 

Une charge ponctuelle 

crée un champ électrique 

en point de l’espace : 

Si q est positive le champ 

est sortant. 

Si q est négative le champ 

est rentrant. 
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Charge ponctuelle unique: 

On déplace la charge (q) d’ un endroit ou le potentiel (V) est non nul (r),  vers un 
endroit  ou le potentiel (V) est  nul (∞). 


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ENERGIE POTENTIELLE ELECTRIQUE (J)  
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L’énergie potentielle électrique est le travail nécessaire à la force électrique  pour 

déplacer une charge ponctuelle (q) à une distance r de Q ver l’infini . 
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Deux charges ponctuelles: 

M x M 
x 

M 
x M 

x 

Une charge négative crée au point M un champ électrique rentrant.  

Une charge positive crée au point M un champ électrique sortant  
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-Si on met une charge positive au point M la force à même sens que      . M
E

-Si on met une charge négative au point M la force est de sens opposée à      .   
M

E

-Si on met une charge positive au point M la force à même sens que      . M
E

-Si on met une charge négative au point M la force est de sens opposée à      .  M
E



Exercice: 4 

Deux charges ponctuelles Q sont placées aux deux coins opposés d’un carré 

 de côté a. Deux autres charges q sont placées aux autres coins du même carré. 

1-Déterminer l’expression de la force électrique qui s’exerce sur la charge Q du point B. 

2-Quelle doit – être la relation ente Q et q pour que cette force soit nulle. 
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N charges ponctuelles: 

 PRINCIPE DE SUPERPOSITION 

Avec le principe de superposition nous admettons  que l’action de Q₁ sur q n’est pas 

 modifier par la présence de Q₂ et la même chose pour Q₂ sur q. 

L’action de Q₁ et Q₂ sur q est la somme des actions de Q₁ et Q₂ sur q prise 

séparément.   On considère un ensemble de N charges 

ponctuelles, on cherche le champ crée par 

toutes ces charges en un point M de 

l’espace.  

Le potentiel créé au point M s’écrit: 
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Si on met une charge q au point M, la force  créée est: 

Et l’énergie potentielle en ce point est: 

L’énergie potentielle appliquée à cette charge est la somme algébrique des 

énergies potentielles individuelles. 
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On considère un ensemble de N charges ponctuelles. 

Le vecteur champ électrique créé par toutes ces charges au point M est la somme 

vectorielle des champs individuels de chaque charge. 

De même le potentiel électrique créé par toutes ces charges au point M est la 

somme algébrique des potentiels individuels.    

Si on met une charge Q au point M,  

La force électrique appliquée à cette charge est la somme vectorielle des forces 

individuelles . 



 ENERGIE INTERNE D’UNE DISTRIBUTION DE CHAREGES PONCTUELLES : 

Soit une charge q soumise à une force électrostatique               . On la déplace de 

l’infini ou V=0 à un point M de potentiel VM 

F qE

Soit une charge Q, elle crée un potentiel V en un point M.  

Si on ramène une charge q de l’infini au point M, l’ énergie 

 potentielle du système de deux charges s’écrit: 
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 L’énergie interne d’un système de deux charges  est 

           l’ énergie potentielle  elle-même. 

Travail de la force électrique. 

Energie potentielle. 
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 Energie interne d’un système de trois charges  

Soit un système constitué de trois charges ponctuelles, son énergie interne s’écrit:  
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 Energie interne d’un système de N charges  

Soit un système constitué par N charges ponctuelles, son énergie interne s’écrit:  
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 ENERGIE INTERNE D’UN SYSTEME N DE CHAREGES PONCTUELLES : 
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



 E     Dérive d’un potentiel. 

Lignes de champ et surfaces équipotentielles  : 

          Circulation élémentaire du champ. .E d

1 2
. ( ).E d E E d 

1 2
.E d dV dV  

.dV E d 
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Le champ électrique     est tangent aux lignes de champs  E

E
E

Ligne de champs  



PROPRIETES : 

Les lignes de champs sont perpendiculaires au équipotentielles 

 Les lignes de champs vont du potentiel le plus grand au plus petit 

Les surfaces équipotentielles sont des surfaces sur lesquelles le potentiel V est constant 
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Passage du potentiel au champ et du potentiel au champ: 



( , , )E x y z( , , )V x y z
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 La Circulation élémentaire du champ: .dV E d 
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 Dipôle électrique: 

 Définition Le dipôle électrique est constitué par l’ arrangement de deux  

charges ponctuelles q égales, de signes opposés, séparées par 

 une petite une distance d 
qq

Exemples de dipôles électriques 

Certaines molécules se comportent naturellement comme des dipôles permanents, 

ceci est du au fait qu’au sein de la molécule, le barycentre  des charges négatives 

et positives ne coïncident pas. Ces molécules sont dites polaires. 

Cette configuration est observable pour certaines molécules. 
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d

p

-La molécule HCl possède une liaison polaire. Son nuage électronique est  

asymétrique, les électrons se trouvent préférentiellement prés de l’atome de chlore.  
-La molécule d’eau H₂O, de forme triangulaire possède également un moment 

dipolaire. Sa polarisation résulte de la polarité de la liaison OH.  

Un dipôle est caractérisé par son ″moment dipolaire 

électrique ’’ ou ″moment électrique″ : p qd



Les molécules comme H2O et HCl ont un dipôle permanent et sont dites « polaires ». 

Moment dipolaire de certaines  
molécules polaires 

 Molécule                              P (c.m)10-30 

               HCl                                 3,43 
              Hbr                                 2,60 
              HI                                   1,26 
              H2O                                5,30 
              CO                                  0,40 
              H2S                                 6,20 
              SO                                  5,30 
              NH3                                5,00 
              C2H5OH                         3,60 
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21 VVV 

Avec :  r1=BM et r2= AM >> a 

Le potentiel au  point M :(principe de superposition)  
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 Potentiel électrique créé par un dipôle électrostatique à grande distances 

(le calcul se fait dans l’approximation dipolaire) 
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On pose  x = a/r,  (x<<1) 

2 2 2

1
2 cosr r a ar   

1/ 2
2

1 2

2 cos
1

a a
r r

r r

 
   

 



1/ 2

2

2

1

1 1 2 cos
1

a a

r r r r




 
   

 


2

2
1

a

r

1/ 2

1

1 1 2 cos
1

a

r r r




 
  

 

1

1 1 cos
1

a

r r r

 
  

 

1/ 2 1
(1 ) 1

2
x x

  

21 

Pour  (x<<1), on écrie: 
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En notant: 
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Energie d’interaction  interne d’un dipôle électrostatique 

A(-q) 2a  
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 Camp électrique créé par un dipôle électrostatique à grande distances 
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Formulation du champ       dans la base des coordonnées cartésiennes  E
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Exercice : Déterminer et représenter sur 

un cercle de rayon a  pour différentes 

valeurs de  le vecteur champ électrique 

créé par un dipôle .  
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Topographie du champ électrique créé par un dipôle 
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

r

dr rd

E E







Nous rappelons qu’une ligne de champ d’un champ de vecteur quelconque est une 

courbe C définie, telle qu’en chacun de ses points  le vecteur lui y tangent. Le vecteur 

élémentaire local de la ligne de champ en coordonnées polaires  doit être parallèle au 

champ local E :    0d E 


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3

3

2 cos

1 sin

r

M

V kP
E

r r
E

V kP
E

r r


 



 




  


   


r

dr rd

E E






2cos sin

dr rd

 


2cos 2 (sin )

sin sin

dr d d

r

  

 
 



Pour:  0
,

2
et r r


  

ln( ) 2ln(sin )r Cst 

2

0

3

0

sin cos

sin

x r

y r

 








Topographie du champ électrique créé par un dipôle 
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0
sin

2

r
r




.
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•Après séparation des variables et intégration on obtient: 

• l’équation polaire des lignes de champ  r=r₀(sin)2  

• où r₀ est un paramètre obtenu pour =/2 

• les composantes de r suivant l’axe ox et oy  sont 

données par ces deux équations. 
 

 

 



Énergie potentielle d’un dipôle électrique 

Dipôle électrostatique placé dans un champ électrique uniforme 

O 
a  

Pu

A(-q) B(+q) 

( )
P A A B B B A

E q V q V q V V   

( .. ( ))

B B

B

A A

BA A
E d dV V V V E ABV        

..

B

A

E AE Bd 

.P q AB

( ) ..
AP B

q V V qE ABE P E    

.
P

E P E 
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La différence de potentiel entre les points A et B peut se calculer par la 

circulation du champ électrique. Il vient alors l’expression de l’énergie 

cherchée  

L’expression de l´énergie potentielle électrostatique Ep d’un dipôle 

rigide dans un champ E intervient souvent dans de nombreux domaines 

de la physique. Elle permet notamment de prédire l’évolution d’un 

dipôle placé dans un champ  électrostatique.  

Le dipôle P=qAB a ses deux charges –q en A et +q en B qui, dans le 

cas général, ne sont pas au même potentiel. Il est alors possible 

d’écrire pour l’énergie totale du dipôle dans le champ extérieur. 





( )
P

E 

Instable 

Stable 

Dipôle électrostatique placé dans un champ électrique uniforme 

Énergie potentielle d’un dipôle électrique 

M 
p


( , )P E

M
E

cos
P M

E PE  
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 / 2 / 2

M
PE

M
PE



34 

Dipôle électrostatique placé dans un champ électrique uniforme 

Couple. 

Si on place un dipôle, de moment électrique     , dans un champ extérieur     uniforme, 

les charges qui le constituent sont soumises à des forces égales et opposées.  

P E

1 2
F F 


( , )P E

1
F

2
F

E
E

M





H

Le dipôle subit alors l’action d’un couple de module : L

. 2 sin sinL F AH qE a pE P E     

2 sinAH a 

L P E 

2P qAB qa p

B

A

p

B

A



Résume sur le dipôle 
 Potentiel électrique créé par un dipôle électrostatique à grande distances 

2P aqu2

cos
( )

kP
V M

r




A (-q) 

O 
x 

B(+q) 

r 

P


  

u


ru

M 

 2a  

u
3

3

2 cos

1 sin

r

M

V kP
E

r r
E

V kP
E

r r


 



 




  


   


Dipôle électrostatique placé dans un champ électrique uniforme 

.
P

E P E 

Énergie potentielle d’un dipôle électrique 

 Moment du couple – force agissant sur un dipôle: 

L P E 
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Lorsque la charge q est répartie sur un fil avec une densité linéique λ, chaque élément 

dl porte une charge dq = λ dl , et crée un champ élémentaire  :  

Champ créé par une distribution continue de charges.  

le champ créé par q est :  
2 2

Kdq K d
d E u u

r r


  2

0

1

4

d
E u

r




 

Dans le cas d’une surface chargée avec une densité surfacique σ telle que dq = σ dS, 

on trouve de la même façon :  

2

0

1

4
S

dS
E u

r




 

De même dans le cas d’un volume V chargé avec une densité volumique ρdv telle que. 

dq = ρ dv on obtient :  

2

0

1

4
v

dv
E u

r




 

dl , dS et dv désignent respectivement les éléments de longueur, de surface et de volume.  



Exemples champ et potentiel crées par des charges continues: 

Fils chargé uniformément de densité  (C/m) 

Le champ crée par un élément dy au point M s’écrit: 

2 2

Kdq K dy
d E u u

r r


 

On décompose suivant ox et oy on obtient: 

cos
x

dE dE 

On exprime tout en fonction de l’angle  : 

cos
cos

x x
r

r



 

xd E

yd E

dE


 
 sin

y
dE dE  

y 

x 1 
M 

L 

2 

O 
x 

y
tg y xtg

x
  

Champ crée par un fils infini à une distance x du fils  

1 2
0 0et 

 

dy

y r

d E
u
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2
cos

x
ddy 




( )dq d C

2

2 22
co

co

s

sK dy d
dE K K

r x

xd

x





  
   



On obtient alors en remplaçant 

cos cos

sin sin

x

y

K
dE dE d

x

K
dE dE d

x


  


  


 


    


En intégrant entre 1 et 2 on a : 

2 1
(sin sin )

x

K
E

x


  

2 1
(cos cos )

y

K
E

x


  

y 

x 1 
M 

L 

2  

O 
xd E

yd E d E
x 
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-Si le fil est infini , c’est-à-dire:  1 22 2
et    

On obtient: 

Potentiel crée par un fils infini à une distance x du fils  

.
x

dV E dl E dx   

0 0

. ln
2 2

x

dx
V E dl E dx x Cte

x

 

 
          

0

2

2

0

x

y

K
E

x x

E

 




 


 

E est indépendant de la longueur du fils . 
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0

1

2
E i

x






0

ln
2

V x Cte



  

Calcul directe du potentiel crée par un fils infini à une distance x du fils  

2

cos

c cosos

dy dkdq k
dV

x
k k

r r

d



 
 


    

cos

d
dV k





 
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y 

x 

1 

M 

L 

2 

O x 

1 2
  

   
1 22 22 2

2 2sin ; sin
2 2

L L

x L x L
   

 

M
E

 
2 1 22

0 0

(sin sin )
4 4 2

M

L
E

x x x L
i i

 
 

 
  



cos cos

sin sin

x

y

K
dE dE

x

K
dE dE

x


 


 


 


    


2

1

cos
M

K
E d

x






  

y 

x 1 
M 

L 

2  

O 
xd E

yd E d E
x 
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Exercice 2.17 

3-Au point M situé à une distance d du fil infini, on place un dipôle    mobile 

autour de son milieu et faisant un angle  avec l’horizontale 

P

a- Donner l’expression du moment du couple du dipôle placé 
dans le champ électrique du fil au point M. 

M
L p E 

0
2

sinL p
x

k



 

d 
M 
x 

M
E

 
P

b-Quelle est l’expression de l’énergie potentielle de ce dipôle. 

. cos
P M Mi

E P E PE   

0

co

2

s
Pi

p
x

E





c-Quel est le travail nécessaire pour que ce dipôle arrive à sa position d’équilibre stable 

0

(cos 1)
2

P P PL i f

P
W E E E

x





     

L
sin( )

M
L p E   



0

co

2

s
Pf

p
x

E





0

1

2
M

E i
x





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M
L p E   ( sin ) ( )

O y x M
L P E k p E k    0

0 0

x y

x

i j

P P

k

E

  


0

sin ( )
2

L P k
x





  

0

0

x

M

E

E







cos

sin

0

x

y

p p

p p p





  






. cos
P x x Mi

E P E PE   
0

co

2

s
Pi

p
x

E




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Disque de rayon R, chargé uniformément de densité  (C/m2) 

champ crée par un disque uniformément chargé 

Le champ crée par une charge dq=ds au point M 

d’abscisse y s’écrit: 

2 2

Kdq K ds

r
d

r
E


 

En prenant la symétrique à dq on obtient un autre champ, ce 

qui donne une composante globale suivant l’axe oy 

et x+dx et portant les charges dQ:  

La contribution de toutes les charges élémentaires 

de cette couronne donne un champ élémentaire dE’:  

2 2

kdQ k dS
dE

r r


  

2

2k xdx

r

 


R 

x 

y 

dq 

M 

r 

d E

 

 

y 

dq 

d E

x 

dx 

Soit une couronne circulaire comprise entre deux cercles de rayon x  

2dS xdxAvec une surface:  
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En décomposant les champs suivant ox et oy on constate que : 

sin
x

dE dE    cos
y

dE dE  

De plus, par raison de symétrie, la composante du 

champ total  suivant ox est nulle 

Donc le champ total créé par cette couronne est 

suivant oy et s’écrit: 

Ecrivant la composante du champ suivant oy  

y
S

E dE  

2

2
cos cos

y

k xdx
dE dE

r

 
   

R 

x 

y 

dq 

M 

r 

'd E

 

y 

dq 

x 

dx 



Exprimons cette composante en fonction d’une seule variable x qui varie entre 0 et R 

0

1

4
k




 
3/ 2

2 2
0

2
y

yxdx
dE

y x




 



2 2
cos

y y

r y x
  


 

1/ 2
2 2

r y x 

2 2 2 2 2

12
2cos

y

k xdx
dE k xd

y

x yy
x

r x

 
  


 




Le champ total suivant oy s’écrit donc: 

 
3/ 2

2 20 0
0

2

R R

y

y xdx
E dE

y x




  


 
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dx 
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 
 2 2

3/ 2
2 20 0

3/ 2

0
0 0

2 2

R R R

y

y xdx y
E dE y x xdx

y x

 

 



    


  

 2 2
3/ 2

y x


     
13

2 2 2
/ 2 1 2

2
/

y x y x
 

  

   
 

1/ 2 1/ 2 1

3/

2 2

2
2

2 2

2

1
2

2

xdx
y x y x xdx

y x

  
    
  

 

   
3/ 2 1/ 2

2 2 2 20
0 0

0

1

2 2

R

Ry xdx y
E

y x y x

 

 

 
   

   

 2 2 2

0

1 1

2 ( )

y
E

y y R





 
   

  


2 2 2

0
2 ( )

y y
E j

y y R





 
  

  



On obtient  alors deux champs : 

Pour y  0 on a:  
2 2

0

1
2 ( )

y
E

y R





 
  

  

Pour y  0 on a :  
2 2

0

1
2 ( )

y
E

y R





 
   

  

0
2






0
2





( / )E V m

( )y m




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Potentiel crée par un disque uniformément chargé 

A- Méthode directe: 

r

kdQ k dS
dV

r


 

On prend la même surface que pour le champ et  exprime en fonction de x et y 

2dS xdx

 
1/ 2

2

0

2 1

4
etr y kx


 

Ce qui donne: 

 
1/ 2

2 2
0

2

xdx
dV

y x








48 

R 

x 

y 

dq 
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dq 
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dx 



On a donc deux potentiels :  

Pour y  0 on a:  

2 2

0

( )
2

V y R y



   
 

Pour y  0 on a : 

2 2

0

( )
2

V y R y



   
 

0
2

R



( )V V

( )y m

On intègre dV:  

 
2 2

1/ 2
2 2 0

0 00

( )
2 2

R
Rxdx

V x dV y x
y x

 

 
    
 

 

 2 2 2

0

( )
2

V x R y y



  
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B- Méthode à partir du champ électrique: 

On prend uniquement le cas   ou y est positif :  

.dV E dl Edy   

2 2 1/ 2

0

1
2 ( )

y
V Edy dy

y R





 
      
 

2 2

0
2 ( )

ydy
V dy

y R





 
   

  
 

En faisant le même changement de variables on obtient: 

2 2

0

( )
2

V y R y cte



    
 

La constante s’annule en posant comme référence V()=0 
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Cas particulier  

Si le rayon est très grand (R tend vers l’infini), le disque devient un plan infini 

0
2

E



Le champ devient: Il est indépendant de y 

.dV E dl Edy   

Le potentiel quand à lui devient: 

0 0
2 2

y
V dy cte

 

 
    

E E

E

E

E

0

E E

E

E

E

0

51 

2 2

0
2 ( )

y y
E j

y y R





 
  

  



12- Théorème de Gauss 
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Représentation vectorielle d’une surface 

dS dS n

Le vecteur élément de surface s’écrit en fonction du vecteur normal à la surface 

Angle solide 

2 2

. . cosu dS u dS
d

r r


   4d    
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d

dS

0
dS

O





dS ndS

( ) ( )E M E uM

u

Cône issu de O 

 et s’appuyant sur dS    

dS

dSn



Flux du champ à travers une surface fermée 

.d E dS  .et E dS  
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Cas de charge q à l’intérieur de la surface 

.E dS  

Le flux du champ crée par la charge q à travers la surface S est: 

2

0

1

4

q
E u

r


2 2

0 0

1 .
.

4 4

q q u dS
u dS

r r 
   

0 0
4

q q
d

 
   

S
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Cas de charge q à l’extérieur de la surface 

Il y a deux flux puisqu’il deux surfaces dSs et dSe traversées par le champ de q   

1

0

.
4

s q
E dS d


    

2

0

'.
4

e q
E dS d


     

1 2
0    

Flux à travers la surface:  
1

s
s 

Flux à travers la surface:  
2

e
s 
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 Enoncé du théorème de Gauss 

int

0

.
q

E dS


  




int
arg 'intq sont les ch es à l érieur de la surface de Gauss

Le flux du champ électrique à travers la surface S fermée 

entourant des charges q est: 

-S’il n’y a pas de charges à l’intérieur la surface fermée, ou si la somme algébrique 

des charges est nulle, le flux est nul.    

-Les charges extérieures à la surface Gauss ne figurent pas dans l’expression du 

flux. (on évitera d’ en conclure qu’ elles ne contribuent pas au champ E en chaque 
point de la surface.)  
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.E dS  
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E

ds

: ( )
n

E r radial et const sur S

//E dS

 .E dS   E dS 
2

4E r

( )S

SE



La méthode générale est la suivante: 

-Trouver une surface fermée passant par le point M ou l’ on désire calculer le champ. 

 Applications 

La surface fermée choisie doit être: soit la ou           .Soit la ou                          . Soit 
la ou             . 

0
M

E  //
M M

E Cst et E S

M
E S

Charge distribuée uniformément sur un plan indéfini. 

     

     

     

     

     

Le champ électrique est perpendiculaire 

 au plan chargé 
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E E

E E

Cette méthode n’ est applicable que si l’ expression de la définition du flux ne 
fait intervenir que le champ que l’on cherche à calculer  

M
E

-écrire la définition du flux:                 étant le champ variable aux différents points de la 

surface. 
.E dS  

-appliquer le théorème de Gauss après avoir compté la charges algébrique totale 
intérieure à la surface. 



1
S

3
S

2
S

Champ électrique: 
On choisie une surface fermée cylindrique de rayon r,  
formée de trois surfaces: S₁ , S₂ et S₃ .  

E

E

E E

2
S

2
S

3
S

E

r

Le cylindrique coupe le plan chargé en s: S
q S

int
q S

1 2 2

0 0

int
2

q S
ES



 
       


1 1 2 2 3

; ; 0
S S S

ES ES     

0
2

E



 Voir  diapo 44 
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S

     

     

     

     

     
1 2

S S S 



E E

E

E

E

0

E E

E

E

E

0

E E

E E E

0

E E

0

0

T
E






T
E







 

 

   

  

   

   

0
2

E





dS

dS

Lignes  de champ  
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E E E

0

E E E

E E E

E E E

Potentiel électrique: 

La relation entre le champ électrique et  

le potentiel est (circulation da champ): 

x 

y 

O 

.dV E dl Edy   

En intégrant suivant oy on obtient: 

0 0
2 2

y
V dy cte

 

 
    

Les équipotentielles sont des plans parallèles au plan 

chargé et  équidistants.  



Sphère de rayon R uniformément chargé 

Dans le cas d’une sphère chargée de rayon a , 

le champ électrique est radial. 

La surface de Gauss choisie est une sphère de rayon r 

Le flux  du champ à travers cette surface s’écrit: 

. .E dS E dS   
Le champ électrique est constant le long de la surface S 

2
4E dS ES E r   

E
dS

Champ électrique: 

r
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 2
4E r 

sphère de rayon r 



a- Cas d’une distribution de charges en surface : 

Soit une surface de Gauss sphérique de rayon r tel que r a 

int
0q dS  

int
q dS S Q    

int

0

.
q

E dS


  




2

0

4
Q

E r




2 2

0
4

Q Q
E k

r r
 

Considérons une sphère de rayon a et de charge Q : 
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0ES 

0E 


+ 

+ 

+ 
+ 

+ + 

+ + 

+ 

+ 
+ + 

+ 
+ 

a 

+ 

+ 

+ 
+ 

+ + 

+ + 

+ 

+ 
+ + 

+ 
+ 

a 

Soit une surface de Gauss sphérique de rayon  

r tel que r>a 

Répartition surfacique

( ) /E r V m

( )r mO

0





0
2






a

2
1 r


2

2

0

a
E

r








.dV E dl Edr   

2 2 2

0
4

Q
V E dr dr

r
    

r a 
1

0E 

r a 

2 2

0
4

Q
V C

r
 

Conditions aux limites: 

2 2
( ) 0 0V C   

La relation entre le champ électrique et le potentiel est: 

Potentiel électrique: 
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

1 1
V C

1

0

V a





2

0

( )
4

Q
V

r
r




Répartition surfacique

1 r

( )V r V

( )r mO a

1
V

1 2 1

0

( ) ( )
4

Q
V a V a C

a
   



0 0int
0

r

q dV dV    

0 0int
0

a

q dV dV    

2

0

4
Q

E r




0

2 3

0

4
4

3
E r r 




3

0

2 2

0 0
4 3

aQ
E

r r



 
 

+ 
+ 

+ 
+ 

+ + 

+ + 

+ 
+ + 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 

+ 

+ 
+ 

3

int 0

4

3
q r 

0

0
3

E r





3

int

4

3
q a Q  

b- Cas d’une distribution de charges en volume : 

Considérons une sphère de rayon a chargée (Q) en volume de densité ρ₀=constante : 




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+ 
+ 

+ 
+ 

+ + 

+ + 

+ 
+ + 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 

+ 

+ 
+ 

a 
( ) /E r V m

( )r mO
a

2
1 r

Répartition volumique

0

0

3

a



Soit une surface de Gauss sphérique de rayon r tel que r a 

Soit une surface de Gauss sphérique de rayon  

r tel que r> a 

int

0

.
q

E dS


  






.dV E dl Edr   

r a 0 2

1

0

0

1 1

0
3 6

E r V r C


 


    

r a 
3

2 2

0

0

3

a
V C

r


 

Conditions aux limites: 

2 2
( ) 0 0V C   

La relation entre le champ électrique et le potentiel est: 

Potentiel électrique: 
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2

2

1

0

0

2 3

r
V a



  
   

 



1 r

( )V r V

( )r mO a

1
(0)V 2

1

0

0(0)
3

V a





portion de

parabole



0

2

0

3

a



Répartition volumique

2

1 2 1

0

0( ) ( )
2

a
V a V a C




  

3

2

0

0

3

a
V

r










 Fil infini  uniformément chargé 

Champ électrique: 

Le champ électrique, dans ce cas, est radial 

La surface de Gauss choisie est un cylindre de rayon r 

Le flux  du champ à travers cette surface s’écrit: 

S

E

r

L

( / )C m

. .E dS E dS    2E dS ES E rL   

Les charges à l’intérieur de la surface de Gauss sont: 
int

q d L Q    

int

0

.
q

E dS


  


 
0

2
L

E rL







0
2

E
r





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1 2
S et SE E   1 2

0
S S
  

1
S

E

2
S E



.dV E d Edr   

0 0

ln
2 2

V dr r Cte
r

 

 
    

La relation entre le champ électrique et le potentiel est: 

En intégrant  en fonction de r on obtient: 

Potentiel électrique: 
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