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LES COURANTS ALTERNATIFS 

Chapitre VI  

Après avoir traité les circuits en régime continu, nous abordons 
maintenant, l’étude des circuits alimentés par des tensions 
alternatives sinusoïdales 
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I-LES COURANTS ALTERNATIFS. 
1.  Définitions. Un courant est alternatif s’il change de sens au 

cours du temps t ; en outre, il est périodique si 
son intensité i reprend la même valeur à des 
intervalles de temps égaux à T. On a alors : 

n est un nombre entier. T est la période 
et son inverse f est la fréquence : 

La période est mesurée en secondes et la 
fréquence en hertz (Hz).  

( ) ( ) (1)  i f t f t nt

2
2 (3) f

T


 

1
(2)f

T
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2. Les courants  sinusoïdaux.. 

Un courant alternatif est sinusoïdal, lorsque son intensité est une fonction sinusoïdale du temps :  

Intensité  efficace. 

La valeur efficace d’un courant alternatif est définie comme la racine carrée de la moyenne 
du carré de l’intensité calculée sur une période. Elle s’écrit: 

Dans le cas d’un courant alternatif sinusoïdal, on obtient: 

2
2 (3) f

T


 

   sin cos   
M M

i I t ou i I t   

       est la valeur instantanée du courant,  
     sa valeur maximale ou amplitude,  
      la pulsation ou fréquence angulaire et  
  ϕ la phase : 


M
I
i

2

0

1
(4) 

T

I i dt
T

2
 M

I
I
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La valeur instantanée d’un tel courant s’écrit alors : 

Le courant efficace I équivaut à un courant continu qui dissiperait la même puissance dans une 
même résistance 

 2 sin (5) i I t 

 3. Production des courants sinusoïdaux. 

Selon l’application à laquelle ils sont destinés, les courants sinusoïdaux peuvent être produits 
de plusieurs manières. Lorsque la puissance consommée par la charge est importante, on 
utilise des générateurs dont le principe, décrit ci-dessous, fait appel aux lois de l’induction 
électromagnétique 

Le principe de production de tensions 
sinusoïdales monophasées a été étudié  

w

n

B



Soit une bobine à N spires tournant, autour de 
l’axe z’z à la vitesse angulaire constante      , 
dans un champ magnétique uniforme  
perpendiculaire à z’z .  


B

Nous avons trouvé que la f.é.m. induite dans 
la bobine est : 

   sin sin


    
M M

d
e t E t

dt
  
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Il en résulte, aux bornes de la bobine une différence de potentiel, ou tension sinusoïdale 
u (t ) de pulsation   
On obtient le même résultat si le cadre est fixe et si le champ tourne à la vitesse 
angulaire       . C’est le principe de l’alternateur monophasé 
On choisit une origine des phases qui permet d’écrire : 

   ( ) cos ( ) 2 cos 
M

u t u t ou u t U t 

U est la valeur efficace de la tension u (t  

II-LOIS D’OHM EN COURANT ALTERNATIF SINUSOÏDAL 

Les lois d’Ohm s’appliquent au courant alternatif sinusoïdal. Elles s’expriment, à chaque 
instant, dans le cas d’éléments simples, comme suit :  

.Lorsque le générateur est relié à une charge, il débite en régime permanent, un courant 
sinusoïdal de même pulsation       et déphasé d’un angle  ϕ  par rapport à u(t).  

R
A i B

L

A B

C

BA

 
A B

u u RI  
A B

di
u u L

dt

1
   A B

q
u u idt

C C



7 

On applique, aux bornes de A et B du circuit une tension :   

on a :  

C’est l’équation de l’oscillateur électrique amorti en régime forcé sinusoïdal4. La 
solution générale de cette équation est la somme de la solution de l’équation sans 
second membre et d’une solution particulière de l’équation avec second membre. La 
première n’intervient que durant le régime transitoire, la seconde: 

La mise en série des trois éléments R, L et C est représentée par le circuit de la figure ci-dessous:  

 ( ) cos
M

u t u t

1
( ) (6)   

di
u t Ri L idt

dt C

 cos (7) 
M

i I t 

constitue la solution du régime permanent.  

  ϕ  est le déphasage du courant par rapport à la tension. 

Il s’agit à présent de déterminer la valeur maximale        (ou la valeur efficace I ) du 
courant et son déphasage   ϕ  à partir de la tension : 

M
I

 ( ) cos (8)
M

u t U t

R CLA B
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 1. La notation complexe. 

Nous allons pour cela, utiliser deux méthodes 

- une méthode symbolique : la '' notation complexe ''  

- une méthode vectorielle : la '' représentation de Fresnel '' 

Un récepteur, soumis à une tension alternative 
sinusoïdale de la forme 

est parcouru par un courant i (t) déphasé de ϕ 
par rapport à la tension :  

i(t) et u(t) étant des grandeurs sinusoïdales, elles peuvent être considérées comme les parties 
réelles des fonctions complexes suivantes :  

 ( ) cos
M

u t U t

 ( ) cos 
M

i t I t 

   ( ) exp ( ) exp     M M
u t U j t et i t I j t  

ou 
   ( ) exp ( ) exp (9) 

M M
u t U j t et i t I j t 

avec,      
2

1 j

 Récepteur 
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En considérant les valeurs efficaces, on obtient : 

Ces expressions contiennent les valeurs efficaces U et I de u(t) et i(t) et leurs déphasages 0  
et    ϕ par rapport à une origine des phases 

Considérons le circuit R, L, C de la figure; il est régi par l’équation (6) : 

En remplaçant u(t) et i(t) par leurs expressions  en (9), il vient: 

Soit en introduisant les valeurs complexes de la tension et du courant : 

La notation complexe a permis de transformer une équation intégro-différentielle  en une 
équation algébrique linéaire .  

        et       sont respectivement les amplitudes complexes de la tension et du courant  
M

IM
U

   exp 0 exp 
M M M M

U U j I I j

   exp 0 exp (10) U U j I I j

1
( )    

di
u t Ri L idt

dt C

     2 exp 2 exp
 

   
 

j
U j t R jL I j t j

C
   



(11)
 

   
 

j
U R jL I

C



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Impédance complexe. 

L’équation (11) peut être présentée sous la forme : (12)U Z I

Z est, par définition, l’impédance complexe du circuit électrique. L’équation (12) est l’expression 
de la loi d’Ohm en notation complexe.  
A partir de (10) et (12), on a : 

   exp exp   
U

Z j Z j
I

 

Le module de l’impédance complexe (13)Z Z

est l’impédance du circuit considéré et   ϕ le déphasage, entre le courant et la tension, introduit 
par l’impédance Z.  

L’impédance complexe d’un circuit électrique s’écrit, sous forme cartésienne: 

où R est sa résistance et X sa réactance, ou bien sous forme polaire: 

 exp (15) Z Z j

 Z R jX (14)

avec  
2 2  

     
 

X
Z R X et arc tg

R


L’inverse de l’impédance est appelé admittance et est noté        . Y
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Application à des cas simples 

Résistance : 

Self pure :  

Condensateur pur : 

 exp 0 0 (16)     Z R Z R j Z R et 

exp (17)
2 2

 
       

 
Z j L Z L j Z L et

 
   

1 1 1
exp (18)

2 2

 
        

 
Z j Z j Z et

C C C

 


  

N.B : Ces valeurs de  ϕ portées dans les expressions (10), montrent que le courant est :  

- en phase avec la tension dans le cas d’une résistance R,  

- en retard de  π/2 sur la tension dans le cas d’une self  

- et en avance de  π/2 dans le cas d’une capacité. 
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2. La représentation de Fresnel. 

Principe de la méthode de Fresnel 
La méthode de Fresnel permet d’effectuer la somme de deux ou plusieurs grandeurs 
sinusoïdales de même pulsation       .Son principe est le suivant :  

M



o

y

x



A

Considérons un vecteur          , de module A, 
qui tourne autour d’un point fixe O à la vitesse 
constante       .  

OM


A l’instant t = 0, il fait un angle  ϕ avec l’axe Ox . 

A l’instant t, il fait un angle (wt + ϕ) avec l’axe Ox . 
La projection OA de ce vecteur sur Ox  est :  

 ( ) cos x t A t 

Ainsi, lorsque le vecteur           tourne autour 
de O, sa projection x sur l’axe effectue un 
mouvement vibratoire sinusoïdal d’élongation  

OM

 ( ) cos x t A t 
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Composition de deux vibrations sinusoïdales. 

M

o

y

x

A

2M

1M

1( )t 
1

A
2

A

2( )t  ( )t 

Considérons deux mouvements vibratoires 
parallèles de même fréquence angulaire         :  

A un instant t, ces vibrations peuvent être 
représentées respectivement, par les vecteurs . 
                 

1 2OA et OA

Ces derniers représentent les projections sur 
ox  des vecteurs                          tournant à la 
même vitesse         .  

1 2OM et OM



1 1 1

2 2 2

cos( )

cos( )

 


 

x A t

x A t

 

 

On sait que la projection sur un axe de la somme de plusieurs vecteurs a comme 
valeur, la somme algébrique des projections de ces vecteurs sur cet axe, soit :  

1 2
(19) x x x

où, x est la projection du vecteur :  

1 2 (20) OM OM OM
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OM est la diagonale du parallélogramme OM1MM2. Ce dernier tourne à la vitesse      sans se 
déformer. La figure  montre une représentation de ces vecteurs à un instant t.  



Ainsi, la construction de Fresnel permet de remplacer le calcul de la somme de plusieurs 
fonctions trigonométriques (équation 19) de même pulsation       par une construction 
géométrique (équation 20) plus simple. 



Règle de Fresnel. 

Le vecteur de Fresnel associé à la somme de plusieurs vibrations, s’obtient en faisant la 
somme vectorielle des vecteurs de Fresnel associés à chacune des vibrations.  

Impédance et déphasage. 

Dans la construction de Fresnel, le choix de l’origine des phases est arbitraire. De ce fait, on 
choisit la phase de l’intensité du courant comme origine et on écrit:  

La d.d.p aux bornes d’un circuit parcouru par un tel courant devient alors : 

               ϕ représente le déphasage entre l’intensité du courant et la tension ; il peut être 
positif  ou négatif.  

 ( ) cos (22)
M

u t U t

 ( ) cos (21)
M

i t I t
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Circuit formé d’une résistance pure 

La d.d.p à ses bornes s’écrit d’après la loi d’Ohm : u ( t ) R i( t ) 

Soit :     cos cos 
M M

U t RI t  

En identifiant les deux membres de cette équation (21), on obtient : 

0 (23) 
M M

U RI et 

L’impédance du circuit étudié est égale à sa résistance R.  

R

xO
M

I

M
U

Dans la représentation de Fresnel, le courant et la tension sont en phase 

Circuit formé d’une self pure. 

La bobine de self inductance L du circuit représenté sur la figure, est parcourue par 
un courant                                      :  il en résulte une d.d.p aux bornes de la self :   ( ) cos

M
i t I t

( ) 
di

u t L
dt
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D’où,   cos sin cos
2

 
     

 
M M M

U t L I t L I t


     

soit :  (24)
2

 
M M

U L I et


 

L

xO
M

I

M
U

2



En considérant les valeurs efficaces, on obtient : (25)  U L I ZI soit Z L 

Z est l’impédance de la self 

Dans la représentation de Fresnel (figure.), le courant dans la self est en retard de π /2 par 
rapport à la d.d.p à ses bornes ; (ou la d.d.p aux bornes de la self est en avance de π /2 sur le 
courant qui la parcourt).  
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Circuit formé d’un condensateur pur. 

Le circuit, de la figure , est parcouru par un courant sinusoïdal d’intensité  

La d.d.p aux bornes du condensateur de capacité C est donnée par la loi d’Ohm : 

D’où :  

A partir de l’équation (26), on obtient : 

 ( ) cos
M

i t I t

1
( )  u t idt

C

 cos sin cos (26)
2

 
    

 

M M

M

I I
U t t t

C C


   

 

(27)
2

  M

M

I
U et

C





C

x

O

M
I

M
U

2


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En considérant les valeurs efficaces, on a :  

1 1
(28)  U I ZI soit Z

C C 

Z représente l’impédance du condensateur de capacité C 

Dans le diagramme de Fresnel (Figure), la d.d.p aux bornes du condensateur est en retard de 
π /2 sur le courant. Ou inversement, le courant présente une avance de π /2 sur la d.d.p 

N.B : Les signes des déphasages ϕ des expressions (24) et (27) ont changé par rapport à ceux 
des  ϕ des expressions (17) et (18), l’origine des phases n’étant plus la même. Cependant 
quelque soit le choix de cette origine, le courant est toujours: - en phase avec la tension dans 
le cas d’une résistance R, - en retard de π/2 sur la tension dans le cas d’une self - et en avance 
de π/2 dans le cas d’une capacité 

Etude du circuit R, L, C série.  

Le circuit, de la figure , est parcouru par un courant sinusoïdal d’intensité  

 ( ) cos
M

i t I t

La d.d.p aux bornes du circuit est donnée par la loi d’Ohm :  

1
( )    

di
u t Ri L idt

dt C



19 

( ) cos( ) cos( ) cos cos (29)
2 2

   
        

   

M

M M M

I
u t U t RI t L I t t

C

 
    



L’expression de u(t) devient :  

R CLM P Q N

En utilisant les résultats trouvés ci-dessus, on trace le diagramme de Fresnel (Figure ) 
correspondant à l’équation (29) 

x
M

IM
RI

M
L I

Q

M
I

C

N

PM

La d.d.p u(t) aux bornes du circuit est représentée par le vecteur         . Son module, qui 
représente la valeur maximale        de cette d.d.p, et le déphasage  ϕ peuvent être calculés à 
partir du triangle MPN rectangle en P .  

MN

M
U
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   2 2

2

2 2 1 
   

 
MM M

IU R L
C

I


 
2

2 1 
   

 
M M

U R L
C

I


1 1 
  

 
tg L

R C
 



(30)
Si on pose  

M M
U ZI

L’impédance du circuit s’écrit alors :  
2

2 1
(31)

 
   

 
Z R L

C



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Remarques : 

1°) Dans la méthode de Fresnel, les valeurs efficaces des grandeurs sinusoïdales, tension u (t), 
courant i (t), flux  φ (t), etc. sont représentées par des vecteurs                     ..etc.. On peut leur 
appliquer les règles de l’addition vectorielle. Par exemple, en ce qui concerne les courants, la 
loi des nœuds de Kirchhoff (  Méthode des trois ampèremètres).  

, ,U I

2°) Certains auteurs écrivent la loi d’Ohm sous la forme : U Z I

             sont des vecteurs mais Z est un opérateur : On multiplie     par Z et on fait subir au 
vecteur ainsi obtenu une rotation d’un angle   ϕ pour obtenir      .  
U et I I

U

III-ASSOCIATION DES IMPEDANCES. 
Les lois, relatives aux associations des résistances en courants continus énoncées, restent 
valables en courants sinusoïdaux lorsqu’on utilise les impédances complexes.  

 1. Impédances montées en série. 

La figure ci-contre montre que : 

   
AD AB BC CD

U U U U U

A
B C

D
1

Z
2

Z
3

Z

Toutes les impédances sont traversées par le même courant i.  1 2 3
   U Z I Z I Z I Z I

1

(32)



n

eq i

i

Z Z
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2. Impédances montées en parallèle. 

 3. Etude du circuit R, L, C série : Résonance.. 

A B

1
Z

2
Z

3
Z

La figure ci-contre montre que : 
1 1 2 2 3 3

    
AB

U U Z I Z I Z I Z I

L’équation du nœud  
en A donne ; 1 2 3

1 2 3

1 1 1 
       

 

U
I I I I U

Z Z Z Z

R CLM P Q NLe circuit de la figure ci-contre constitué 
d’une résistance R, d’un condensateur C et 
d’une bobine de self inductance L montés en 
série, est alimenté par une tension 
sinusoïdale de la forme : ( ) cos( )

M
u t U t

Les trois impédances : 1 2 3
, ,   

j
Z R Z jL Z

C



étant montées en série, la formule (32 ) donne : 

1

1 1
(33)




n

ieq i
Z Z

  
j

Z R jL
C




soit  
1

(34)
 

   
 

Z R j L
C



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ou sous forme polaire 

 
2

2 1 1 1
(35)

   
      

   

j
Z Ze avec Z R L et tg L

C R C

   
 

Où  ϕ représente le déphasage entre la tension u(t) et le courant i(t). 

Il est intéressant d’étudier les variations de l’impédance Z ou celles de l’intensité efficace I = U/Z 
en fonction de la pulsation       .  

0

U R



0

Z

R

Ces figures  illustrent les évolutions de ces grandeurs en fonction de        .  
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A partir des graphes des figures, on note que : 

2

21
0 1 (36)

 
    

 
L LC

C
 



l’impédance Z est minimale et vaut R ; 
l’intensité I est maximale et vaut U/R 

La pulsation a pour valeur:  
0

1
(37) 

LC
 

       ne dépend que des caractéristiques L et C du circuit électrique qui constitue un oscillateur 
électrique. C’est la raison pour laquelle       est appelée pulsation propre de l’oscillateur et fo sa 
fréquence propre. Lorsque la fréquence de l’excitation u(t) se rapproche de la fréquence propre 
de l’oscillateur, ce dernier entre en résonance 

0


0


A la résonance, plusieurs phénomènes sont observés, à savoir : 

- Les tensions VL et Vc aux bornes de la bobine et du condensateur sont algébriquement 
opposées et la d.d.p aux bornes du circuit résulte uniquement de la présence de la résistance.  

- Les tensions VL et Vc peuvent à la résonance, valoir plusieurs centaines de fois la tension 
appliquée : on dit alors qu’il y a un phénomène de surtension 

- La formule (35) montre que le déphasage entre le courant et la tension d’excitation est nul.  
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4. Bobine (R, L) et condensateur (C ) en parallèle: Antirésonance. 

On considère le circuit constitué d’une bobine 
de self inductance L de résistance R et d’un 
condensateur sans pertes, de capacité C 
montés comme le montre la figure.  

R L

A B

C
L’impédance du circuit est :  

1 1
(38) 


jC

Z R jL



Afin de simplifier l’étude du circuit précédent, nous allons négliger la résistance R devant Lw . 
Dans ce cas, l’impédance du circuit devient : 

2
(39)



jL
Z

R LC




Z est une réactance pure et le circuit se comporte comme : 

- Une self si  
0

 

-Une capacité si 
0

 

I U ZLorsque                   , l’impédance devient infinie et l’intensité du courant                    s’annule, 
d’où le nom de "circuit bouchon" donné à ce montage. Le phénomène ainsi observé est 
appelé "antirésonance".  

0
 
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IV-PUISSANCE ELECTRIQUE EN COURANT SINUSOÏDAL. 

 1. Valeur instantanée de la puissance électrique. 

Dans une construction de Fresnel, les courants qui circulent respectivement dans la self et le 
condensateur sont égaux et opposés : leur somme est nulle. Leurs intensités sont plus 
importantes que l’intensité totale du circuit : on dit alors qu’il y a un phénomène de 
surintensité.  

Soit une impédance Z, soumise à une tension électrique  
 sinusoïdale :                                           et par courue par un 
courant électrique d’intensité   

( ) 2 cosu t U t
 ( ) 2 s i t I co t 

Z

La puissance électrique instantanée fournie à Z s’écrit alors:  

   ( ) ( ) ( ) 2 cos cos (40)    p t u t i t U I t t  

   ( ) cos cos 2 (41)  p t U I U I t  Soit : 

L’expression (41) montre que p(t) est la somme d’un terme constant et d’un terme 
variable à fréquence double de la fréquence de la tension d’excitation. La puissance varie 
au cours du temps.  



27 27 

 3. Puissance active. 

2 . Valeur moyenne de la puissance électrique. 

La valeur moyenne, sur une période, de la puissance : 

donne avec (41),  

0

1
( ) (42) 

T

P p t dt
T

   
0 0

1 1
cos cos 2 (43)   

T T

P U I dt U I t dt
T T

  

La valeur moyenne du second terme étant nulle, on a :  cos (44)P U I 

P correspond à la puissance électrique consommée par Z. 

Elle désigne la puissance effective liée à l’énergie électrique qui peut être 
convertie par le récepteur sous une autre forme d’énergie (mécanique, 
calorifique etc..). Elle est mesurée en watt (W) et son expression en courant 
sinusoïdal est donnée par l’équation (44), soit :   cosP U I 

Le terme cos  est appelé "facteur de puissance" du récepteur. Il mesure l’efficacité d’un 
système à produire de la puissance active. Dans le cas  

- d’une self ou d’un condensateur,  0
2

   P

- d’une résistance  0  P U I
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4. Puissance réactive.  

 5. Puissance apparente. 

Elle est liée, comme le montrent les exemples qui suivent, à l’énergie emmagasinée durant un 
quart de période, dans les selfs et les condensateurs du récepteur, puis entièrement restituée au 
réseau au cours de l’autre quart. C’est une énergie qui n’est donc pas consommée par la charge, 
elle est définie par : sinQ U I  Elle est mesurée en Var (volt-ampère-réactif ). 

Cette puissance est qualifiée ainsi parce que l’absorption et la restitution de l’énergie sont 
dues à la réaction d’une self ou d’un condensateur aux variations du courant.  

Puissance réactive dans le cas d’une self pure :  Dans ce cas à une tension ( ) cos
M

u t U t

 ( ) s
2

 
M

i t I co t correspond un courant d’intensité  

La puissance instantanée qui est fournie à la self s’écrit alors : sin2P U I t
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V-PUISSANCE EN NOTATION COMPLEXE.  

 1. Valeur instantanée de la puissance électrique. 
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VI-FACTEUR DE PUISSANCE. 



31 

Courants triphasés 


