Chapitre V

L'INDUCTION
ELECTROMAGNETIQUE

Nous n’avons considéré, jusqu’a présent, que des régimes stationnaires : en électrostatique
et dans le cas des courants continus. La variation, en fonction du temps, des charges
sources entraine un phénomeéne de propagation des champs, il en résulte des effets de
capacité entre conducteurs et une modification du théoreme d’Amperel. Lorsque cette
variation est lente, c'est-a-dire lorsque les dimensions des circuits électriques sont tres
faibles par rapport aux longueurs d’onde qui interviennent dans la propagation2, on peut
considérer que le courant électrique est, a un instant donné, le méme le long de tout le
circuit. En outre, les effets de capacité sont localisés a la surface des armatures des
condensateurs : c’est le cas des “régimes quasi stationnaires” que nous allons considérer
dans les deux chapitres qui suivent.
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1..Description des phénoménes d’'induction: mise en évidence de courants induits.

Expérience 1 Une bobine de fil souple déformable est placée
dans un champ magnétique terrestre et comporte

dans son circuit un galvanometre G. /’

-On déforme la geométrie des spires: un courant apparait; Le sens du courant est
differant selon que la surface du circuit augmente ou diminue.

-Le courant ne circule que pendant le temps qui correspond a la déformation;

il dépend de la vitesse a laquelle est réalisée cette déformation et s’annule dés que
le circuit devient immobile.

Expérience 2
Le circuit restant fixe, les mémes phénomenes apparaitrons
si on approche ou on éloigne un aimant de lui.

On obtiendrait les mémes phénomenes en remplacant
I'aimant par un circuit mobile parcouru par courant



Expérience 3 ‘

On remplace maintenant 'aimant par un circuit fixe

comportant un générateur une bobine et un interrupteur. | N ‘
On ferme I’ interrupteur:: un courant temporaire circule

dans le circuit. A la réouverture de I' interrupteur apparait

un courant en sens inverse.

Si on inverse les bornes du générateur, les phénomeénes précédant sont inverses.

Expérience 4

Un circuit rigide tournant a vitesse constante dans un champ magnétigue constant est
parcouru par courant alternatif de méme fréquence.

Un cadre rectangulaire, constitué de N spires conductrices,
peut tourner librement autour d’un axe verticale dans une
région ou régne un champ magnétique B (figure ). Ses
deux extrémités sont reliées a des bagues solidaires de |'axe
de rotation. Sur ces bagues viennent frotter deux électrodes @)
(balais) qui constituent les extrémités d’un circuit comportant
un galvanometre G. La rotation du cadre entraine I'apparition
d’un courant dans le galvanomeétre. Le sens du courant induit
est tel que les forces gu’il crée s‘'opposent a la rotation du cadre
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2. Lois de I'induction.

Toutes ces expériences ont mis en évidence l'apparition d’un courant dans un circuit qui
ne comporte aucun générateur. Ces courants résultent de la naissance d’une force
électromotrice induite e. Selon le cas, on remarque que le sens et la grandeur du courant
dépendent de la variation, en fonction du temps,

- de la surface du circuit .

- du champ magnétique dans lequel est plongé le circuit (expériences 2 ).

- de l'orientation du circuit par rapport au champ magnétique (expérience 4).

Par consequent :

1°) Chaque fois que le flux magnétique ¢, qui traverse un circuit, varie, une force
électromotrice e prend naissance dans le circuit. Sa durée At est égale a celle de la
variation du flux A .

2°) Le sens du courant induit est tel que les forces électromagnétiques, qui en résultent,
s‘'opposent a la cause qui a créé ce courant. C’est |a loi de Lenz.

3°) La force électromotrice induite, e, est égale et opposée a la vitesse de variation du flux

magnétique a travers la surface du circuit et s’écrit : AD
E=— —
At

La f. &.m instantanée est: €=— —



Nous avons déja vu, au chapitre précédant, gu’un courant électrique peut engendrer un
champ magnétique. D’un autre c6té, les expériences, que nous venons de décrire, montrent
qu’un champ magnétique peut induire, sous certaines conditions, un courant dans un circuit
électrique. La loi de Faraday donne le module de la force électromotrice induite e et la loi de
Lenz précise son signe. Nous allons, dans ce qui suit, démontrer la loi de Lenz-Faraday dans
un cas particulier.

1. Cas d’un circuit fermé placé dans un champ constant et uniforme

On considere un circuit fermé, formé d’'une barre y
métalligue MN qui se déplace sur un rail conducteur en U,

S

placé dans un champ magnétique constant uniforme B

et perpendiculaire au plan du circuit.
La tige conductrice MN se déplace a la vitesse

Il en résulte un déplacement de charges électriques, O A GRRREEEEEEEES > X
le long de la tige, a la vitesse V .

B
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La vitesse d’une charge q par rapport au champ est: V_

=V +V,

Le déplacement de charges électriques, le long de la tige nous donne un courant |



Elle est soumise a la force de Lorentz: | = gV, x B = g (\7 + \7q ) =< B

Lors d’un déplacement dz dela charge g a travers la tige, le travail de la force F est:
dw=F -dz=qv, xB =(q(v +vq)>< B)-dz

Or V est paralléle a dzpar conséquent :gw — q (\7>< [3;) .dz |

Ce travail équivaut a celui qui est produit par une force - —>de = (V > B) -dz

électromotrice élémentaire "de” telle que : dw = qde
dX

dt
dx est le déplacement élémentaire de la tige le long des rails. U'équation ( 8) devient :
1 o=\ — 1 N -
de=—[ dX < B -dz] i =__[ X . ]
Ot ( > ) soit de ot (dx < dz) B

La force électromotrice qui prend naissance aux extrémités de la tige mobile est :

e= —i[(dszxdi)- |§:|
dt
En introduisant le flux coupé par la tige au cours de son déplacement :
d® =(dxxd¢)-B
dd® Laloi de Lenz- Faraday est démontrée, ici, dans un cas
"~ dt  particulier, mais elle est valable dans tous les cas.

V est la vitesse de déplacement de la tige MN.V =

ilvient: e =



2. Champ électromoteur.

—_—

L'expression de la force qui met les charges en mouvement: F = qQV < B

—_

Peut secrire: | — gE, ou E_ = V X B est le champ électromoteur.

Comme dans le cas des générateurs, on introduit un champ électromoteur qui est
a l'origine de la force électromotrice.

Calculons la circulation du champ électromoteur le long d’un contour fermé. On prend comme
contour C le circuit précédant, constitué de la tige MN et du conducteur en U.

N
¢ E,-di= (VxB)-d2=[(vxB)-dz+ [ (vxB)-d7
© © M NAM
La derniere intégrale est nulle car la vitesse est nulle, on peut écrire :

(_f)C Em-d?=ide=e

La circulation du champ électromoteur le long de C est égale a e : elle n’est pas nulle, donc
le champ électromoteur ne dérive pas d’un potentiel
e= 4) E_-d¢

C



—>

D’autre part, on sait que le champ électrostatique E. dérive d’un potentiel, soit é ES . dz
N 7 . —> —> — b d - C
Si on considere le champ électrique total : E = ES +E ona @ E.-df/=e¢
m
C
3. Loi de Lenz-Faraday en fonction de la vitesse

On peut également obtenir I'expression de la f.é.m. induite en faisant apparaitre la vitesse

de dépl t de la tige :
e deplacement de la tige e=£BdX=£Bd_X=£BV

dt dt

Le signe de la force électromotrice e est donné par la loi de Lenz. La figure montre que le sens
du courant est tel que la force F qu’il crée s'oppose au mouvement.

Le conducteur métallique MM’ parcouru par un courant,
placer dans un champ magnétique, est soumis

a une force de Laplace: f=iMM'xB |§1 /M d§1
A® = BS, — BS, = —B/Ax - o
e=—d£=—B£d—X=—B£v

dt dt l\/l’/

4. Equation de Maxwell-Faraday

Dans I'exemple précédent , C est un circuit électrique dont la surface varie et qui est placé
dans un champ constant. Ce circuit, constitué de conducteurs, existe physiquement.



Dans I'exemple précédent , C est un circuit électrique dont la surface varie et qui est placé
dans un champ constant. Ce circuit, constitué de conducteurs, existe physiquement.
D’apres la loi de Lenz- Faraday on a : dd d . . . .
e = — soit e=——H B-dS=(I) E-d?¢
dt dt S C
Considérons, a présent, une région de l'espace ou regnent des champs variables EetB
On choisit un contour quelconque C et une surface arbitraire S sappuyant sur ce contour. C

n’est plus, dans ce cas, un circuit électrique, c’est une courbe fermée imaginaire. Comme S
ne dépend pas ici du temps, I'équation s’écrit alors : ~ - SB -
$ E-di=[[ —<—=-dS
s OX
C’est I'équation de Maxwell-Faraday.

Les deux circuits étant immobiles,

le galvanometre indique i,=0. Fermons ___
I'interrupteur K, un courant i; va

circuler dans le circuit C,, celui-ci i e
envoie, a travers C,, un flux
magnétique: D = Mi,
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Au cours du temps dt que dure cette fermeture, le courant i; passe de 0 a i; maximum. Il en
résulte, a travers C,, une variation du flux d@® et |'apparition d’'une force électromotrice induite

dd d ]
ez === Mll
dt dt di
|
Comme les deux circuits sont immobiles, M ne dépend pas du temps ; d'ou e, = — M dtl
di
De méme, si on fait varier i, dans C,, on constate, dans G, la naissance €, = — M 2

d’une f.é.m. induite : dt
Le coefficient d’induction mutuelle M est le méme dans ces deux expressions.

Considérons, a présent, une bobine, montée comme le ”@Wmmm

montre la figure. Comme précédemment, lors de la

fermeture ou de l'ouverture de l'interrupteur K, La i *At |_ \J

bobine est traversée par un flux proportionnelai @ = Lij K

La variation du courant i entraine I'apparition d’'une f.é.m induite : e = — Lﬂ
dt

L est I'inductance ou le coefficient de self induction de la bobine .

7. Calcul des forces appliquées a un circuit électrique.



.1. Générateur de courant alternatif.

Une bobine, comportant N spires, tourne autour d’un axe z’z vertical, a la vitesse angulaire w
constante, dans un champ magnétiqueB uniforme et constant. Le champ est perpendiculaire a
2’z (figure ). A l'instant t, la normalefi a la bobine fait avec Bun angle @ = wt

Le flux magnétique embrassé a cet instant par la bobine est :
D(t) =D,, cos@=wt ®, = NSB

Il en résulte dans la bobine une f.é.m induite :

e=—d;i)=WCI>M sinwt = E, sinwt

dt

C’est le principe de I'alternateur monophasé.

2.La loi d’'Ohm permet d’écrire

e— Lﬂ—ri = RiI u(t) =R
dt

Si L=0et r=0=¢e(t)=u(t)=RI

E .
=—sinwt= 1, =—%

) ] u
Uut)=u_, sinwt=1I1(t)=—
(1) =u, ()=5=—3 2 )



V- CIRCUIT"R.L" )
—o0 K

Le circuit, représenté sur la figure V.10, est 20‘_
constitué d’une résistance R en série avec une
bobine d’inductance L. Un inverseur K permet - Soit — L
de relier R et L a une source de courant continu de
force électromotrice e - Soit de les mettre en court

circuit.

1. Etablissement du courant.

Lorsqu’on met le commutateur sur la position 1, le courant qui traverse la résistance R
commence a augmenter. En I'absence de la bobine, le courant atteint rapidement sa valeur
d’équilibre i=e/R . Toutefois, en présence de la bobine, une f.é.m d’auto-induction apparait
dans le circuit et, conformément a la loi de Lenz, cette f.é.m s’‘oppose a 'augmentation du
courant. De ce fait, le courant ne s’établit pas instantanément. Lapplication de la loi des

mailles au circuit, permet d’écrire:

i di
Ri+L——e=0
dt
On obtient alors I'équation différentielle suivante: — 4+ —1 =

) e = L
La solution de cette équation est: |(t) — E(l_ e r) avec 7 = E
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L'expression de la tension aux bornes de la bobine s’obtient par dérivation, soit :

V = Lﬂ= e exp(—ij
dt T

Cette tension est maximale a la fermeture de l'interrupteur. Pendant |'établissement du courant,
elle décroit avec le temps et lorsque le courant est établi, la bobine se comporte comme un fil
de résistance négligeable.

Les graphes représentant I'évolution, au cours du temps, du courant et de la
différence de potentiel aux bornes de la bobine sont donnés ci-dessous.

V (1),
e

»

A 4

Ces figures mettent en évidence un régime transitoire et un régime permanent. Lorsque
le régime permanent est atteint, ona . e

I=l=— et V=0
R



.2. Rupture du courant.

Lorsqu’on met I'inverseur en position 2, on court-cicuite R et L. La loi des mailles, appliquée au
circuit obtenu, permet d’écrire : di

Ri+L—=0
dt

»

V (1),

R

S L . - , di :
L'équation qui régit alors le courant circulant dans ce circuit est donnée par:— 4+ —1 =0

C’est une équation différentielle de premier o[dre dont la solution est donnée par:

: e — L
I(t)=—e * avec 7=—
L R

La différence de potentiel aux bornes de la bobine est alors donnée par :

V = Lﬂ=e exp(—lj
dt T



.3. Bilan énergétique

Considérons le bilan des énergies depuis la fermeture du circuit jusqu’a I'établissement
du courant. En multipliant I'équation de la maille, idt , nous obtenons

1 i i i
d E(LIZ)_I_ Ri*dt = eidt
eldt représente I'énergie fournie par le générateur entre les instants t et t +dt .

Ri°dt estI'énergie dissipée dans la résistance R entre t et t+ dt .

1, .
d > (Li?) correspond a I'énergie emmagasinée dans la bobine.

Durant I’établissement du courant dans le circuit, r .
o Nt du co W, = [eidt = L1’
le générateur fournit I'énergie :
0

Une partie de cette énergie est stockée dans la bobine, soit W, = j' d %(Li 2) = 1 ]2
0]

. 1
Le reste est dissipé par effet Joule dans la résistance, soit : WR = _‘- Ri*dt = E LI?
0

Au cours de la rupture du courant, la bobine restitue entierement I'énergie qu’elle a
emmagasinée lors de I'établissement du courant, sous forme de chaleur dans la résistance R .

Cette énergie a été stockée par la bobine sous forme magnétique et la restitue sous forme
d’énergie électrique.



4. Localisation de I'énergie : Densité d’énergie magnétique. N2
S

Considérons le cas d’'une bobine dont le coefficient de self induction est: L= 24

1

'énergie magnétique emmagasinée dans cette bobine est:WL m—

Or le champ magnétique a l'intérieur de la bobine (solénoide de B — NI
longueur infinie) est : 2 M, ——
& ) dou: W = EB_ S| ° L
2 ﬂO 1 Bz
La densité d’énergie magnétique localisée dans le champ magnétiqgue w = — —
(région de l'espace située a l'intérieure de la bobine) est : 2 u,

Tableau: Equations de Maxwell en régimes quasi stationnaires

Théoreme de Gauss ﬁ D-dS = ZQi Valable dans tous les cas

Conservation du flux Sﬂ) B-dS =0 Valable dans tous les cas
S

Equation Maxwell Ampeére J‘ g.d7 =J‘ S Valable en régimes quasi
4 stationnaires

Equation Maxwell Faraday <J'> E.d7= _ij B.d<S | Valable dans tous les cas
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