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L’INDUCTION 
ELECTROMAGNÉTIQUE 

Chapitre V 

Nous n’avons considéré, jusqu’à présent, que des régimes stationnaires : en électrostatique 
et dans le cas des courants continus. La variation, en fonction du temps, des charges 
sources entraîne un phénomène de propagation des champs, il en résulte des effets de 
capacité entre conducteurs et une modification du théorème d’Ampère1. Lorsque cette 
variation est lente, c'est-à-dire lorsque les dimensions des circuits électriques sont très 
faibles par rapport aux longueurs d’onde qui interviennent dans la propagation2, on peut 
considérer que le courant électrique est, à un instant donné, le même le long de tout le 
circuit. En outre, les effets de capacité sont localisés à la surface des armatures des 
condensateurs : c’est le cas des ″régimes quasi stationnaires″ que nous allons considérer 
dans les deux chapitres qui suivent.  



 Par A.DIB 
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1..Description des phénomènes d’induction: mise en évidence de courants induits.  

Expérience 1 

G

                                                             est placée  

   dans un champ magnétique terrestre et comporte   

Une bobine de fil souple déformable  

 dans son circuit un galvanomètre G. 

-On déforme la géométrie des spires: un courant apparait; Le sens du courant est 

 différant selon  que la surface du circuit augmente ou diminue. 

G

-Le courant ne circule que pendant le temps  qui correspond à la déformation;  

il dépend de la vitesse à laquelle est réalisée cette déformation et s’annule dés que 

 le circuit devient immobile. 

Expérience 2 

G

Le  circuit restant fixe, les mêmes phénomènes apparaitrons 

 si on approche ou on éloigne un aimant de lui.   

N S

On  obtiendrait les mêmes phénomènes en remplaçant 

 l’aimant par un circuit mobile parcouru par courant 

i

i

i



4 

G

Expérience 3 

On remplace maintenant l’aimant par un circuit fixe  

comportant un générateur une bobine et un interrupteur. 

On ferme l’ interrupteur:: un courant temporaire circule  

dans le circuit. A la réouverture de l’ interrupteur apparait 

 un courant en sens inverse. 

 
Si on inverse les bornes du générateur, les phénomènes précédant sont inversés. 

Expérience 4 

Un circuit rigide tournant à vitesse constante dans un champ magnétique constant est 

 parcouru par courant alternatif de même fréquence. 

Un cadre rectangulaire, constitué de N spires conductrices,  
peut tourner librement autour d’un axe verticale dans une  
région ou règne un champ magnétique     (figure ). Ses  
deux extrémités sont reliées à des bagues solidaires de l’axe  
de rotation. Sur ces bagues viennent frotter deux électrodes  
(balais) qui constituent les extrémités d’un circuit comportant 
 un galvanomètre G. La rotation du cadre entraîne l’apparition  
d’un courant dans le galvanomètre. Le sens du courant induit  
est tel que les forces qu’il crée s’opposent à la rotation du cadre 

w

G B

B
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Toutes ces expériences ont mis en évidence l’apparition d’un courant dans un circuit qui 
ne comporte aucun générateur. Ces courants résultent de la naissance d’une force 
électromotrice induite e. Selon le cas, on remarque que le sens et la grandeur du courant 
dépendent de la variation, en fonction du temps, 
 - de la surface du circuit . 
- du champ magnétique dans lequel est plongé le circuit (expériences 2 ).  
- de l’orientation du circuit par rapport au champ magnétique (expérience 4).  

Par consequent : 

1°) Chaque fois que le flux magnétique φ , qui traverse un circuit, varie, une force 
électromotrice e prend naissance dans le circuit. Sa durée  Δt  est égale à celle de la 
variation du flux Δφ  .  

2°) Le sens du courant induit est tel que les forces électromagnétiques, qui en résultent, 
s’opposent à la cause qui a créé ce courant. C’est la loi de Lenz.  

3°) La force électromotrice induite, e, est égale et opposée à la vitesse de variation du flux 
magnétique à travers la surface du circuit et s’écrit :  

 


e
t


 

d
e

d t
La f. é.m instantanée  est : 

2. Lois de l’induction. 



6 

z

O x

y

N

M

B

v

M 

N

1. Cas d’un circuit fermé placé dans un champ constant et uniforme 

On considère un circuit fermé, formé d’une barre 
métallique MN qui se déplace sur un rail conducteur en U,  

La tige conductrice MN se déplace à la vitesse  v
Il en résulte un déplacement de charges électriques, 
le long de la tige, à la vitesse      . q

v

 placé dans un champ magnétique constant uniforme 
et perpendiculaire au plan du circuit.  

B

La vitesse d’une charge q  par rapport au champ est :  
T q

v v v

Le déplacement de charges électriques, le long de la tige nous donne un courant  i

Nous avons déjà vu, au chapitre  précédant, qu’un courant électrique peut engendrer un 
champ magnétique. D’un autre côté, les expériences, que nous venons de décrire, montrent 
qu’un champ magnétique peut induire, sous certaines conditions, un courant dans un circuit 
électrique. La loi de Faraday donne le module de la force électromotrice induite e et la loi de 
Lenz précise son signe. Nous allons, dans ce qui suit, démontrer la loi de Lenz-Faraday dans 
un cas particulier. 

A

I I -V-LOIS DE LENZ- FARADAY. 
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Elle est soumise à la force de Lorentz :      
T q

F qv B q v v B

Lors d’un déplacement         de la charge q à travers la tige, le travail de la force         est : dz F

         
T q

dw F dz qv B q v v B dz

Or       est parallèle à       par conséquent : 
q

v dz    dw q v B dz

Ce travail équivaut à celui qui est produit par une force  
électromotrice élémentaire ″de″ telle que :  dw qde








   de v B dz

   est la vitesse de déplacement de la tige MN. v 
dx

v
dt

dx est le déplacement élémentaire de la tige le long des rails. L’équation ( 8) devient :  

soit   
1    
 

de dx B dz
dt

 
1     
 

de dx dz B
dt

La force électromotrice qui prend naissance aux extrémités de la tige mobile est : 

En introduisant le flux coupé par la tige au cours de son déplacement : 

 
1     
 

e dx d B
dt

    d dx d B

il vient :  


 
d

e
dt

La loi de Lenz- Faraday est démontrée, ici, dans un cas 
particulier, mais elle est valable dans tous les cas. 
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2. Champ électromoteur.  

L’expression de la force qui met les charges en mouvement:   F qv B

Peut   s’écrire : 
m

F qE Où   
m

E v B est le champ électromoteur. 

Comme dans le cas des générateurs,  on introduit un champ électromoteur qui est 
à l’origine de la force électromotrice. 

Calculons la circulation du champ électromoteur le long d’un contour fermé. On prend comme 
contour C le circuit  précédant, constitué de la tige MN et du conducteur en U. 

                 
N

m
C C

M NAM

E d v B d v B dz v B d

La dernière intégrale est nulle car la vitesse est nulle, on peut écrire : 

La circulation du champ électromoteur le long de C est égale à e : elle n’est pas nulle, donc 
le champ électromoteur ne dérive pas d’un potentiel 

   
N

m
C

M

E d de e

  m
C

e E d
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D’autre part, on sait que le champ électrostatique        dérive d’un potentiel, soit S
E  S

C

E d

Si on considère le champ électrique total :   
S m

E E E on a  C

E d e

3. Loi de Lenz-Faraday en fonction de la vitesse 

On peut également obtenir l’expression de la f.é.m. induite en faisant apparaître la vitesse 
de déplacement de la tige :  

  
B dx dx

e B B v
d t d t

Le signe de la force électromotrice e est donné par la loi de Lenz. La figure  montre que le sens 
du courant est tel que la force F qu’il crée s’oppose au mouvement. 

Le conducteur métallique MM’ parcouru par un courant, 

 placer dans un champ magnétique, est soumis  
à une force de Laplace: ' f iMM B

if

B

M 

M dS

     
f i

BS BS B x


     

d dx
e B B v

dt dt

4. Equation de Maxwell-Faraday 

Dans l’exemple précédent , C est un circuit électrique dont la surface varie et qui est placé 
dans un champ constant. Ce circuit, constitué de conducteurs, existe physiquement. 
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Dans l’exemple précédent , C est un circuit électrique dont la surface varie et qui est placé 
dans un champ constant. Ce circuit, constitué de conducteurs, existe physiquement. 

D’après la loi de Lenz- Faraday on a : 
soit  

 
d

e
dt

     S C

d
e B dS E d

dt

Considérons, à présent, une région de l’espace où règnent des champs variables                    . 
On choisit un contour quelconque C et une surface arbitraire S s’appuyant sur ce contour. C 
n’est plus, dans ce cas, un circuit électrique, c’est une courbe fermée imaginaire. Comme S 
ne dépend pas ici du temps, l’équation s’écrit alors :  

E et B

    S

B
E d dS

x




C’est  l’équation de Maxwell-Faraday. 

1
I

1
C

E K

2
C

2
I

I I I -MUTUELLE INDUCTION ET SELF INDUCTION. 

Les deux circuits étant immobiles,  
le galvanomètre indique i₂=0. Fermons 
 l’interrupteur K, un courant i₁ va  
circuler dans le circuit C₁, celui-ci  
envoie, à travers C₂, un flux  
magnétique :  1

  Mi
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Au cours du temps  dt  que dure cette fermeture, le courant i₁ passe de 0 à i₁ maximum. Il en 
résulte, à travers C₂, une variation du flux         et  l’apparition d’une force électromotrice induite  d

2 1


   

d d
e Mi

dt dt

Comme les deux circuits sont immobiles, M ne dépend pas du temps ; d’où 1

2
 

di
e M

dt

De même, si on fait varier i₂ dans C₂, on constate, dans C₁, la naissance  
d’une f.é.m. induite :  

2

1
 

di
e M

dt

Le coefficient d’induction mutuelle M est le même dans ces deux expressions.  

Considérons, à présent, une bobine, montée comme le 
montre la figure. Comme précédemment, lors de la 
fermeture ou de l’ouverture de l’interrupteur K, La 
bobine est traversée par un flux proportionnel à i 

E K

i
  Li

La variation du courant i entraîne l’apparition d’une f.é.m induite :   
di

e L
dt

L est l’inductance ou le coefficient de self induction de la bobine . 

7. Calcul des forces appliquées à un circuit électrique.  
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Une bobine, comportant N spires, tourne autour d’un axe z’z vertical, à la vitesse angulaire w  
constante, dans un champ magnétique      uniforme et constant. Le champ est perpendiculaire à 
z’z (figure ). A l’instant t, la normale     à la bobine fait avec     un angle   

B

n B  wt

w

n

B



Le flux magnétique embrassé à cet instant par la bobine est : 

( ) cos    
M M

t wt NSB

Il en résulte dans la bobine une f.é.m induite : 

sin sin


    
M M

d
e w wt E wt

dt

C’est le principe de l’alternateur monophasé. 

.1. Générateur de courant alternatif. 

2.La loi d’Ohm permet d’écrire  

( )   
di

e L ri Ri u t Ri
dt

0 0 ( ) ( )    si L et r e t u t Ri

I V - APPLICATIONS DES PHENOMENES D’INDUCTION 

( ) sin ( ) sin     M M

M M

E Eu
u t u wt i t wt I

R R R



13 

e

K

R

1

2

L

Le circuit, représenté sur la figure V.10, est 
constitué d’une résistance R en série avec une 
bobine d’inductance L. Un inverseur K permet - Soit 
de relier R et L à une source de courant continu de 
force électromotrice e - Soit de les mettre en court 
circuit. 

1. Etablissement du courant. 

Lorsqu’on met le commutateur sur la position 1, le courant qui traverse la résistance R 
commence à augmenter. En l’absence de la bobine, le courant atteint rapidement sa valeur 
d’équilibre  i=e/R . Toutefois, en présence de la bobine, une f.é.m d’auto-induction apparaît 
dans le circuit et, conformément à la loi de Lenz, cette f.é.m s’oppose à l’augmentation du 
courant. De ce fait, le courant ne s’établit pas instantanément. L’application de la loi des 
mailles au circuit ,  permet d’écrire: 

On obtient alors l’équation différentielle suivante : 

0  
di

Ri L e
dt

 
di R e

i
dt L L

La solution de cette équation est: ( ) 1
 

   
 

te L
i t e avec

L R
 

V - CIRCUIT ″R.L ″ 
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L’expression de la tension aux bornes de la bobine s’obtient par dérivation, soit : 

exp
 

   
 

di t
V L e

dt 

Cette tension est maximale à la fermeture de l’interrupteur. Pendant l’établissement du courant, 
elle décroît avec le temps et lorsque le courant est établi, la bobine se comporte comme un fil 
de résistance négligeable. 

Les graphes représentant l’évolution, au cours du temps, du courant et de la 
différence de potentiel aux bornes de la bobine sont donnés ci-dessous.  

Ces figures mettent en évidence un régime transitoire et un régime permanent. Lorsque 
le régime permanent est atteint, on a 

0  
e

i I et V
R

( )i t

t

e r

( )V t

t

e
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.2. Rupture du courant. 

Lorsqu’on met l’inverseur en position 2, on court-cicuite R et L. La loi des mailles, appliquée au 
circuit obtenu, permet d’écrire :  

0 
di

Ri L
dt

L’équation qui régit alors le courant circulant dans ce circuit est donnée par : 

C’est une équation différentielle de premier ordre dont la solution est donnée par : 

0 
di R

i
dt L

( )


 
te L

i t e avec
L R

 

La différence de potentiel aux bornes de la bobine est alors donnée par : 

exp
 

   
 

di t
V L e

dt 

( )i t

t

e r

( )V t
t

e
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.3. Bilan énergétique 

Considérons le bilan des énergies depuis la fermeture du circuit jusqu’à l’établissement 
du courant. En multipliant l’équation de la maille, idt , nous obtenons 

2 21
( )

2
 d Li Ri dt eidt

représente l’énergie fournie par le générateur entre les instants t et t +dt  . 

est l’énergie dissipée dans la résistance R entre t et t+ dt . 

correspond à l’énergie emmagasinée dans la bobine. 

eidt

2
Ri dt

21
( )

2
d Li

Durant l’établissement du courant dans le circuit,  
le générateur fournit l’énergie : 

Une partie de cette énergie est stockée dans la bobine, soit 

Le reste est dissipé par effet Joule dans la résistance, soit : 

2

0



 G
W eidt LI

2 2

0

1 1
( )

2 2



 L
W d Li LI

2 2

0

1

2



 R
W Ri dt LI

Au cours de la rupture du courant, la bobine restitue entièrement l’énergie qu’elle a 
emmagasinée lors de l’établissement du courant, sous forme de chaleur dans la résistance R . 
Cette énergie a été stockée par la bobine sous forme magnétique et la restitue sous forme 
d’énergie électrique. 
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   i

iS

D dS Q

0 
S

B dS

   
C S

H d J dS

    C
S

d
E d B dS

dt

Conservation du flux 

Théorème de Gauss 

Equation Maxwell Ampère 

Equation Maxwell Faraday 

Valable dans tous les cas 

Valable dans tous les cas 

Valable dans tous les cas 

Valable en régimes quasi  
stationnaires  

Tableau:  Equations de Maxwell en régimes quasi stationnaires 

4. Localisation de l’énergie : Densité d’énergie magnétique. 

Considérons le cas d’une bobine dont le coefficient de self induction est : 
2

0


N
L S

L’énergie magnétique emmagasinée dans cette bobine est:  21

2


L
W LI

Or le champ magnétique à l’intérieur de la bobine (solénoïde de  
longueur infinie) est :  0


NI

B 
d’ où :  

2

0

1

2


B
W SI



La densité d’énergie magnétique localisée dans le champ magnétique 
(région de l’espace située à l’intérieure de la bobine) est :  

2

0

1

2


B
w


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FIN


